https://doi.org/10.15407/polymerj.45.04.269

AROMATIC POLYMER HAVING BOTH AZOBENZENE AND AZOMETHINE UNITS IN THE MAIN CHAIN AS AN EFFICIENT PHOTO-RESPONSIVE MATERIAL

I.M. TKACHENKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
e-mail: ttkachenkoim@gmail.com
ORCID: 0000-0001-6683-4866

YU.I. KURIOZ,
Institute of Physics NAS of Ukraine, 46, Prospect Nauky, Kyiv, 03028, Ukraine,
e-mail: kurioz@hotmail.com
ORCID: 0000-0002-1647-2489

R.M. KRAVCHUK,
Institute of Physics NAS of Ukraine, 46, Prospect Nauky, Kyiv, 03028, Ukraine,
Institute of Physical Chemistry, PAS, 44/52, Kasprzaka, Warsaw, 01-224, Poland,
e-mail: ruslan.m.kravchuk@gmail.com

ORCID: 0000-0001-7858-0509

D.V. LITOSHENKO,
Institute of Physics NAS of Ukraine, 46, Prospect Nauky, Kyiv, 03028, Ukraine,
e-mail: dim.litoschenko2011@gmail.com

V.G. NAZARENKO,
Institute of Physics NAS of Ukraine, 46, Prospect Nauky, Kyiv, 03028, Ukraine,
Institute of Physical Chemistry, PAS, 44/52, Kasprzaka, Warsaw, 01-224, Poland,
e-mail: vnazaren@iop.kiev.ua

ORCID: 0000-0003-0602-6116
V.V. SHEVCHENKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
e-mail: valpshevchenko@gmail.com

ORCID: 0000-0002-7526-6933

Polym. J., 2023, 45, no. 4: 269-277.

Section: Polymer synthesis.

Language: English.

Abstract:

Azobenzene and aromatic azomethine groups acting as versatile photoreversible optically switchable scaffolds attract much interest as efficient building blocks for the construction of light-responsive materials. The pronounced interest in light-sensitive polymers originates from their unique ability to become anisotropic after irradiation by polarized light. Despite the significant progress that has been made on the synthesis of either polyazobenzenes or polyazomethines, numerous challenges remain, and they have become the catalyst for the ongoing research. The polymer having both azobenzene and azomethine groups are fundamentally less developed. In this work, a strategy to the synthesis of the light-responsive polymer with azobenzene and azomethine units in the backbone is proposed. The polymer is prepared by condensation polymerization of octafluorobiphenylene-based bis-hydroxybenzaldehyde with aromatic meta-linked octafluorobiphenylene-based diamine. The structure of the polymer is characterized by Fourier transform infrared spectroscopy. The synthesized polymer can be solution-cast into flexible solid films with a tensile strength of 25 MPa. Furthermore, the polymer displays elevated glass transition temperatures (Tg), reaching 235 °C, and demonstrates an admirable thermal stability, retaining resilience at temperatures up to 390 °C. The polymer film underwent photoisomerization and exhibited changes in light-induced birefringence when exposed to 365 nm UV light and both polarized and unpolarized blue (405 nm) and green (532 nm) light. The ability to record optical information using polymer films in the form of diffraction gratings is demonstrated.

Keywords: azobenzene, polyazomethine, photoisomerization, light-responsive material, photoinduced birefringence

REFERENCES

1. Liu M., Shi X., Li L., Zhang J., Huang Z., Zhang W., Zhou N., Zhang Z., Zhu X. Synthesis of discrete conjugated fluorene-azo oligomers for the investigation of azobenzene position-dependent physical properties and photoresponsive behavior. Macromol. Chem. Phys., 2021, 222, no. 14: 2100092. https://doi.org/10.1002/ macp.202100092.
2. Kovalchuk A., Kobzar Ya.L., Tkachenko I., Shevchenko V. Polymers containing azo and azomethine groups: synthesis, properties, and application. Polym. Sci. B., 2019, 61, no. 2: 109–123. https://doi.org/10.1134/S1560090419020040.
3. Belowich M.E., Stoddart J.F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41, no. 6: 2003–2024. https://doi.org/10.1039/C2CS15305J.
4. Georgiev A., Yordanov D., Dimov D., Zhivkov I., Nazarova D., Weiter M. Azomethine phthalimides fluorescent E→Z photoswitches. J. Photochem. Photobiol., A., 2020, 393, 112443. https://doi.org/10.1016/j. jphotochem.2020.112443.
5. Giles L.W., Faul C.F., Tabor R.F. Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems. Mater. Adv. 2021, 2, no. 13: 4152–4164. https://doi.org/10.1039/D1MA00340B.
6. Liu F., Urban M.W. Recent advances and challenges in designing stimuliresponsive polymers. Prog. Polym. Sci., 2010, 35, no. 1–2: 3–23.
https://doi.org/10.1016/j.progpolymsci.2009.10.002.
7. Natansohn A., Rochon P. Photoinduced motions in azo-containing polymers. Chem. Rev., 2002, 102, no. 11: 4139–4176. https://doi.org/10.1021/cr970155y.
8. Wu Y., Natansohn A., Rochon P. Photoinduced birefringence and surface relief gratings in novel polyurethanes with azobenzene groups in the main chain. Macromolecules, 2001, 34, no. 22: 7822–7828. https://doi.org/10.1021/ma0102722.
9. Bandara H.D., Burdette S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 2012, 41, no. 5: 1809–1825. https://doi.org/10.1039/c1cs15179g.
10. Zhang H. Reprocessable photodeformable azobenzene polymers. Molecules, 2021, 26, no. 15: 4455. https://doi.org/10.3390/molecules26154455.
11. Ovdenko V.M., Komarenko D.O., Lisniak S.O., Ronkovych A.V., Multian, V.V., Gayvoronsky V.Y. The substituent effect on CW laser beam self-action manifestation under UV irradiation of azo-azomethine PMMA composites thin films. Opt. Mater., 2023, 138, Article no. 113735. https://doi.org/10.1016/j.optmat.2023.113735
12. Ovdenko V.M., Multian V.V., Uklein A.V., Kulai I.V., Kolendo O.Y., Gayvoronsky V.Y. Novel efficient nonlinear optical azo-and azomethine polymers containing an antipyrine fragment: synthesis and characterization. J. Mater. Chem. C., 2020, 8, no. 26: 9032–9045. https://doi.org/10.1039/D0TC01657H
13. King N., Whale E.A., Davis F.J., Gilbert A., Mitchell G.R. Effect of media polarity on the photoisomerisation of substituted stilbene, azobenzene and imine chromophores. J. Mater. Chem., 1997, 7, no. 4: 625–630. https://doi.org/10.1039/A607980F.
14. Luo Y., Utecht M., Dokic J., Korchak S., Vieth H.M., Haag R., Saalfrank P. Cis-trans isomerisation of substituted aromatic imines: a comparative experimental and theoretical study. ChemPhysChem, 2011, 12, no. 12: 2311–2321. https://doi.org/10.1002/cphc.201100179.
15. Kondo M., Kojima D., Ootsuki N., Kawatsuki N. Photoinduced exfoliation of a polymeric N-benzylideneaniline liquid-crystalline composite based on a photoisomerization-triggered phase transition. Macromol. Chem. Phys., 20021, 222, no. 12: 2100097. https://doi.org/10.1002/macp.202100097.
16. Kondo M., Makino K., Miyake K., Matsuo Y., Fukae R., Kawatsuki N. Coatable photomobile polymer films using spring-like photochromic compounds. Macromol. Chem. Phys., 2018, 219, no. 8: 1700602. https://doi.org/10.1002/macp.201700602.
17. Kovalchuk A.I., Kobzar Ya.L., Tkachenko I.M., Kurioz Yu.I., Tereshchenko O.G., Shekera O.V., Nazarenko V.G., Shevchenko V.V. Photoactive fluorinated poly(azomethine)s with azo groups in the main chain for optical storage applications and controlling liquid crystal orientation. ACS Appl. Polym. Mater., 2020, 2, no. 2: 455–463. https://doi.org/10.1021/acsapm.9b00906.
18. Tkachenko I., Kurioz Yu.I., Kovalchuk A., Kobzar Ya.L., Shekera O., Tereshchenko O., Nazarenko V., Shevchenko V. Optical properties of azo-based poly(azomethine)s with aromatic fluorinated fragments, ether linkages and aliphatic units in the backbone. Mol. Cryst. Liq. Cryst., 2020, 697, no. 1: 85–96. https://doi.org/10.1080/15421406.2020.1731080.
19. Kobzar Ya.L., Tkachenko I., Bliznyuk V., Shekera O., Turiv T., Soroka P., Nazarenko V., Shevchenko V. Synthesis and characterization of fluorinated poly(azomethine ether)s from new core-fluorinated azomethine-containing monomers. Des, Monomers Polym. 2016, 19, no. 1: 1–11. https://doi.org/10.1080/15685551.2015.1092007.
20. Karim S.A., Nomura R., Masuda T. Synthesis and properties of polyacetylenes with salicylideneaniline groups. J. Polym. Sci. Part A Polym. Chem., 2002, 40, no. 14: 2458–2463, https://doi.org/10.1002/pola.10334.
21. Nomura R., So Y., Izumi A., Nishihara Y., Yoshino K., Masuda T. Multicolor fluorescent π-conjugated oligomer having salicylideneaniline moieties. Chem. Lett. 2001, 30, no. 9: 916–917. https://doi.org/10.1246/cl.2001.916.
22. Kovalchuk A.I., Kobzar Ya.L., Tkachenko I.M., Tolstov A.L., Shekera O.V., Shevchenko V.V. Synthesis and optical properties of new isomeric core-fluorinated azo-containing bis(2-hydroxybenzaldehyde)s. J. Mol. Struct. 2018, 1173: 671–678. https://doi.org/10.1016/j.molstruc.2018.07.041.
23. Kurioz Yu.I. Phototransformations in cellulose cinnamate films at illumination with polarized UV light. Ukrainian J. Phys. 2013, 58, no. 12: 1138–1138. https://doi.org/10.15407/ ujpe58.12.1138
24. Erfantalab M., Khanmohammadi H. New 1,2,4-triazole-based azo-azomethine dye. Part III: synthesis, characterization, thermal property, spectrophotometric and computational studies. Spectrochim, Acta A Mol. Biomol. Spectrosc., 2014, 125: 345–352. https://doi.org/10.1016/j.saa.2014.01.113.
25. Priimagi A., Kaivola M., Virkki M., Rodriguez F.J., Kauranen M. Suppression of chromophore aggregation in amorphous polymeric materials: towards more efficient photoresponsive behavior. J. Nonlinear Opt. Phys. Mater., 2010, 19, no. 1: 57–73. https://doi.org/10.1142/S0218863510005091.
26. Iwan A., Sek D. Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog. Polym. Sci. 2008, 33, no. 3: 289–345. https://doi.org/10.1016/j.progpolymsci.2007.09.005.
27. Wu Y., Kanazawa A., Shiono T., Ikeda T., Zhang Q. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process. Polymer, 1999, 40, no. 17: 4787–4793. https://doi.org/10.1016/S0032-3861(98)00713-7.
28. Zola R.S., Bisoyi H.K., Wang H., Urbas A.M., Bunning T.J., Li Q. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv. Mater., 2019, 31, Article no. 1806172. https://doi.org/10.1002/adma.201806172.
29. Berdin A., Gill J.R., Perivolari E., Kauppo J., Apostolopoulos V., D’Alessandro G., Kaczmarek M., Priimagi A. Analysis of light diffraction by azobenzene-based photoalignment layers. Opt Express, 2022, 30, no. 16: 29495–29506. https://doi.org/ 10.1364/OE.464278.
30. Nersisyan S., Tabiryan N., Steeves D.M., Kimball B.R. Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths. Opt. Express, 2009, 17, no. 14: 11926–11934. https://doi.org/10.1364/oe.17.011926.
31. Tabiryan N.V., Roberts D.E., Liao Z., Hwang J.Y., Moran M., Ouskova O., Pshenichnyi A., Sigley J., Tabirian A., Vergara R., De Sio L. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv. Optical Mater., 2021, 9, no. 5: 2001692. https://doi.org/10.1002/adom.202001692.