https://doi.org/10.15407/polymerj.45.01.037

HIGHLY DISPERSED NANOCOMPOSITES BASED ON POLYMER/INORGANIC HYBRIDS AND NICKEL NANOPARTICLES: THE ROLE OF THE MATRIX STRUCTURE IN THE PROCESS OF IN SITU FORMATION

Т.B. Zheltonozhska,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0001-5272-4244
N.М. Permyakova,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0002-7622-1059
V.V. Klepko,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0001-8089-8305
L.M. Grishchenko,
Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, 4g Glushkova Av., 03127 Kyiv, Ukraine,
ORCID:  0000-0002-0342-4859
D.О. Klymchuk,
M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2 Tereshchenkivska Str., 01601 Kyiv,Ukraine,
ORCID:  0000-0002-7076-8213
Polym. J., 2023, 45, no. 1: 37-55.

 

Section: Polymer synthesis.

 

Language: Ukrainian.

 

Abstract:

A series of polymer/inorganic hybrids based on silica sol and polyacrylamide (SiO2-g-PAAm) with different number and length of PAAm chains was obtained by radical graft polymerization of acrylamide from the surface of SiO2. The main molecular and structural parameters of the hybrids, such as the chemical composition, average radius and charge of SiO2 particles, the number of grafts per one particle and their molecular weight, the average diameter and hydrodynamic volume of hybrid particles, and the thickness of the PAA layer, were determined. For this, elemental analysis, DTGA, static light scattering, viscometry, potentiometric titration, and TEM were used. The functional properties of hybrids as hydrophilic matrices in the in situ synthesis of nickel nanoparticles by borohydride reduction of metal ions from the Ni(NO3)2·6H20 salt in an aqueous medium have been studied. Using the method of UV-Vis spectroscopy and the developed original approach, the kinetics and efficiency of the formation of NiNPs in hybrid solutions were characterized, depending on the structure and concentration of the hybrid matrices and the concentration of the metal salt. An increase in the rate of accumulation and yield of NiNPs in solutions of all hybrids was found with an increase in salt concentration in the range of 0,010-0,078 kg·m-3, as well as a predominant decrease in the reaction rate with an increase in the concentration of hybrid matrices from 0,5 to 2,0 kg·m-3. It was shown that the structure of the hybrid matrices, determined by the number and length of PAAm chains, as well as the permeability of the grafted polymer layer, was one of the key factors affecting the formation rate and yield of NiNPs. It provided greater or lesser accessibility of the active groups of the “corona” and the inorganic “core” for metal ions and reducing agent molecules. Morphological studies of purified reduction products were carried out by TEM. Based on them, the main structural elements of highly dispersed NiNPs/SiO2-g-PAAm nanocomposites were established – swollen hairy particles of hybrids with small amorphous NiNPs (1,7±0,8 nm) included in the polymer “corona”.

Key words: polymer/inorganic hybrid, nickel nanoparticles, in situ synthesis, kinetic, morpholodhy.

 

REFERENCES
1. Zhu Z., Guo X., Wu S., Zhang R., Wang J., Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Industrial & Engineering Chemistry Research, 2011, 50, no. 24: 13848–13853. https://doi.org/10.1021/ie2017306.
2. Khurana J.M., Vij K. Nickel nanoparticles: a highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. Journal of Chemical Sciences, 2012, 124, no. 4: 907–912. https://doi.org/10.1007/s12039-012-0275-8.
3. Jiang Z., Xie J., Jiang D., Wei X., Chen M. Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm, 2013, 15, no. 3: 560–569. https://doi.org/10.1039/C2CE26398J.
4. Kalbasi R.J., Zamani F. Synthesis and characterization of Ni nanoparticles incorporated into hyperbranched polyamidoamine–polyvinylamine/SBA-15 catalyst for simple reduction of nitro aromatic compounds. RSC Advances, 2014, 4, no. 15: 7444–7453. https://doi.org/10.1039/C3RA44662J.
5. Farooqi Z.H., Iqbal S., Khan S.R., Kanwal F., Begum R. Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. e-Polymers, 2014, 14, no. 5: 313–321. https://doi.org/10.1515/epoly-2014-0111.
6. Roy P.S., Bhattacharya S.K. Size-controlled synthesis, characterization and electrocatalytic behaviors of polymer-protected nickel nanoparticles: a comparison with respect to two polymers. RSC Advances, 2014, 4, no. 27: 13892–13900. https://doi.org/10.1039/C4RA00426D.
7. Hu H., Xin J.H., Hu H., Wang X., Miao D., Liu Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions – a review. Journal of Materials Chemistry A, 2015, 3, no. 21: 11157–11182. https://doi.org/10.1039/C5TA00753D.
8. Wang D., Astruc D. The recent development of efficient earth-abundant transition-metal nanocatalysts. Chemical Society Reviews, 2017, 46, no. 3: 816–854. https://doi.org/10.1039/C6CS00629A.
9. Seo S., Perez G.A., Tewari K., Comas X., Kim M. Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Scientific Reports, 2018, 8, 11786. https://doi.org/10.1038/s41598-018-29605-1.
10. Basaveni S., Kuchkina N.V., Shifrina Z B., M.Pal, Rajadurai M. Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation. Journal of Nanoparticle Research, 2019, 21, no: 5, 91. https://doi.org/10.1007/s11051-019-4533-2.
11. Tzitzios V., Basina G., Gjoka M., Alexandrakis V., Georgakilas V., Niarchos D., Boukos N., Petridis D. Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology, 2006, 17, no. 15: 3750–3755. https://doi.org/10.1088/0957-4484/17/15/023.
12. Knecht M.R., Garcia-Martinez J.C., Crooks R.M. Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 atoms. Chemistry of Materials, 2006, 18, no. 21: 5039-5044. https://doi.org/10.1021/cm061272p.
13. Couto G.G., Klein J.J., Schreiner W.H., Mosca D.H., de Oliveira A.J.A., Zarbin A.J.G. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties. Journal of Colloid and Interface Science, 2007, 311, no. 2: 461–468. https://doi.org/10.1016/j.jcis.2007.03.045.
14. Pirkkalainen K., Vainio U., Kisko K., Elbra T., Kohout T., Kotelnikova N.E., Serimaa R. Structure of nickel nanoparticles in a microcrystalline cellulose matrix studied using anomalous small-angle X-ray scattering. Journal of Applied Crystallography, 2007, 40, part s1: s489–s494. https://doi.org/10.1107/S0021889806055804.
15. Singh V., Srinivas V., Ranot M., Angappane S., Park J.-G. Effect of polymer coating on the magnetic properties of oxygen-stabilized nickel nanoparticles. Physical Review B, 2010, 82, no. 5: 054417. https://doi.org/10.1103/PhysRevB.82.054417.
16. Klostergaard J., Seeney C.E. Magnetic nanovectors for drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8, suppl. 1: S37–S50. https://doi.org/10.1016/j.nano.2012.05.010.
17. Anuraj S., Tejabhiram Y., Mahdiyar B., Shivaraman R., Gopalakrishnan C., Karthigeyan A. Wet chemical synthesis of nickel nanostructures using different capping agents. Asian Journal of Chemistry, 2013, 25, suppl. iss.: S65–S68. International Conference on Nanoscience & Nanotechnology, (ICONN 2013), 18–20 March 2013, SRM University, Kattankulathur, Chennai, India.
18. Weeber R., Hermes M., Schmidt A.M., Holm C. Polymer architecture of magnetic gels: a review. Journal of Physics: Condensed Matter 2018, 30, no. 6: 063002. https://doi.org/10.1088/1361-648x/aaa344.
19. Veloso S.R.S., Ferreira P.M.T., Martins J.A., Coutinho P.J.G., Castanheira E.M.S. Magnetogels: prospects and main challenges in biomedical applications. Pharmaceutics 2018, 10, no. 3: 145. https://doi.org/10.3390/pharmaceutics10030145.
20. Li J., Lee K.-P., Gopalan A.I. One-step preparation of nickel nanoparticle-based magnetic poly(vinyl alcohol) gels. Coatings, 2019, 9, no. 11: 744. https://doi.org/10.3390/coatings9110744.
21. Moumen A., Fattouhi M., Abderrafi K., El Hafidi M., Ouaskit S. Nickel colloid nanoparticles: synthesis, characterization, and magnetic properties. Journal of Cluster Science, 2019, no. 3. https://doi.org/10.1007/s10876-019-01517-8.
22. Pileni M.-P. Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Advanced Functional Materials, 2001, 11, no. 5: 323-336. https://doi.org/10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J.
23. L. Vékás, M.V. Avdeev, D. Bica. Magnetic nanofluids: synthesis and structure, Chapter 25. In book: Nanoscience in Biomedicine/ Ed. D. Shi. Tsinghua Universify Press: Beijing, snd Springer-Veflag GmbH: Berlin Heidelberg, 2009: 650–710. https://doi.org/10.1007/978-3-540-49661-8_25.
24. Viali W.R., de Assis D.R., do Couto G.G., Melo W.W.M., Novak M.A., Júnior M.J. Water-based metallic nickel magnetic fluids. Journal of Nanofluids, 2018, 7, no. 1: 21–25. http://dx.doi.org/10.1166/jon.2018.1438.
25. Gupta V., Sharma S., Sharma A.K., Sharma M. Acoustical studies of nickel nanoparticles based nanofluids: concentration and temperature dependent approach. Journal of Indian Chemical Society, 2020, 97: 895–902. https://www.researchgate.net/publication/353345551.
26. Mazumder A., Davis J., Rangari V., Curry M. Synthesis, characterization, and applications of dendrimer-encapsulated zero-valent Ni nanoparticles as antimicrobial agents. ISRN Nanomaterials, 2013, 2013, 843709. https://doi.org/10.1155/2013/843709.
27. Sudhasree S., Banu A.S., Brindha P., Kurian G.A. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological & Environmental Chemistry, 2014, 96, no. 5: 743–754. https://doi.org/10.1080/02772248.2014.923148.
28. Ravindhranath K., Ramamoorty M. Nickel based nano particles as adsorbents in water purification methods – A review. Orient. J. Chem., 2017, 33, no. 4: 1603–1613. http://dx.doi.org/10.13005/ojc/330403.
29. Sharada S., Narsaiah T.B,, Bharath M., Naik K. Synthesis of nickel nanoparticles and application in malachite green dye colour removal using adsorption. International Journal for Scientific Research & Development, 2019, 7, no. 5: 48-55. ISSN (online): 2321–0613.
30. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003, 36, no. 13: R167–R181. https://doi.org/10.1088/0022-3727/36/13/201.
31. Parisien A., Al-Zarka F., Hussack G., Baranova E.A., Thibault J., Lan C.Q. Nickel nanoparticles synthesized by a modified polyol method for the purification of histidine-tagged single-domain antibody ToxA5.1. Journal of Materials Research, 2012, 27, no. 22: 2884–2890. https://doi.org/10.1557/jmr.2012.323.
32. Socoliuc V., Peddis D., Petrenko V.I., Avdeev M.V., Susan-Resiga D., Szabó T., Turcu R., Tombácz E., Vékás L. Magnetic nanoparticle systems for nanomedicine – a materials science perspective. Magnetochemistry, 2020, 6, no. 1: 2. https://doi.org/10.3390/magnetochemistry6010002.
33. Jaji N.-D., Othman M.B.H., Lee H.L., Hussin M.H., Hui D. One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnology Reviews, 2021, 10, no. 1: 318–329. https://doi.org/10.1515/ntrev-2021-0019.
34. Hossain M.S., Miran M.S., MD. Rokonujjaman, MD. Susan A.B.H., Yosuf M., Mollah A., Rahman M.M. Synthesis of nickel nanoparticles using polt(vinyl alcohol) as a capping agent. Journal of the Asiatic Society of Bangladesh, Science, 2014, 40, no. 2: 197–205. https://doi.org/10.3329/jasbs.v40i2.46018
35. Hussain M.S., Haque K.M.A. Synthesis of nano-sized nickel particles by a bottom-up approach in the presence of an anionic surfactant and a nonionic polymer. Journal of Scientific Research, 2010, 2, no. 2: 313-321. https://doi.org/10.3329/jsr.v2i2.3261.
36. Pandey A., Manivannan R. Chemical reduction technique for the synthesis of nickel nanoparticles. International Journal of Engineering Research and Applications, 2015, 5, no. 4: 96–100. ISSN: 2248-9622.
http://www.ijera.com/papers/Vol5_issue4/Part%20-%202/N5040296100.pdf
37. Demidova Y., Simakova I., Prosvirin I., Murzin D.Yu., Simakov A. Size-controlled synthesis of Ni and Co metal nanoparticles by the modified polyol method, International Journal of Nanotechnology, 2016, 13, nos. 1/2/3: 3–14. https://doi.org/10.1504/IJNT.2016.074519
38. Zheltonozhskaya T.B., Permyakova N.M., Fomenko A.S., Klymchuk D.O., Klepko V.V., Grishchenko L.N., Vretik L.O. The process of nickel nanoparticle formation in hydrophilic polymer/inorganic matrices. Molecular Crystals and Liquid Crystals, 2021, 716, no. 1: 13–28. https://doi.org/10.1080/15421406.2020.1859692.
39. Sowwan M., Makharza S., Sultan W., Ghabboun J., Teir M.A., Dweik H. Analysis, characterization and some properties of polyacrylamide-Ni(II) complexes. International Journal of the Physical Sciences, 2011, 6, no. 27: 6280–6285. https://doi.org/10.5897/IJPS09.257.
40. Sari N., Kahraman E., Sari B., Özgün A. Synthesis of some polymer-metal complexes and elucidation of their structures. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2006, 43, no. 8: 1227–1235. https://doi.org/10.1080/10601320600737484.
41. Ifijen I.H., Itua A.B., Maliki M., Ize-Iyamu C.O., Omorogbe S.O., Aigbodion A.I., Ikhuoria E.U. The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles. Heliyon, 2020, 6, e04907. https://doi.org/10.1016/j.heliyon.2020.e04907.
42. Zheltonozhskaya T., Permyakova N., Momot L. Intramolecular polycomplexes in block and graft copolymers, Chapter 5. In book: Hydrogen-Bonded Interpolymer Complexes. Formation, Structure and Application/ Eds. V. Khutoryanskiy, G. Staikos. World Scientific: New Jersey–London–Singapore etc., 2009, 85–153. https://doi.org/10.1142/9789812709776_0005.
43. Fedorchuk S., Zheltonozhskaya T., Gomza Yu., Kunitskaya L., Demchenko O. Synthesis of silver nano-particles in the matrices of block and graft copolymers and polymer-inorganic substances in water. Macromolecular Symposia, 2012, 317–318, no. 1: 103–116. https://doi.org/10.1002/masy.201100098.
44. Zheltonozhskaya Т.B., Permyakova N.M., Kondratiuk T.O., Beregova T.V., Klepko V.V., Melnik B.S. Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukainian Journal of Chemistry, 2019, 7, no. 2: 20–39. https://doi.org/10.17721/fujcV7I2P20-39.
45. Zheltonozhskaya T.B., Permyakova N.M., Kravchenko O.O., Maksin V.I., Nessin S.D., Klepko V.V., Klymchuk D.O. Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polymer-Plastics Technology and Materials, 2021, 60, no. 4: 369–391. https://doi.org/10.1080/25740881.2020.1811318.
46. Shevchenko L.V., Dovbnia Y.Y., Zheltonozhskaya T.B., Permyakova N.M., Vygovska L.M., Ushkalov V.O. Influence of nanosilver preparation in carriers based on polymer/inorganic hybrids on the quality and safety of chicken eggs. Regulatory Mechanisms in Biosystems, 2021, 12, no. 3: 391–395. https://doi.org/10.15421/022183.
47. Shevchenko L.V., Dovbnia Y.Y., Permyakova N.М., Zheltonozhskaya Т.B., Shulyak S.V., Klymchuk D.O. Influence of nanosilver in hybrid carriers on morphological and biochemical blood parameters of laying hens. Regulatory Mechanisms in Biosystems, 2022, 13, no. 1: 15–22. https://doi.org/10.15421/022203.
48. Tsubokawa N. Environmentally friendly synthesis of polymer-grafted nanoparticles, Chapter 9. In book: Applications of ionic liquids in science and technology/ Ed. S. Handy. InTech: Europe, China, 2011, 174–196. ISBN: 978-953-307-605-8.
49. Tsubokawa N., Maruyama K., Sone Y., Shimomura M. Graft polymerization of acrylamide from ultrafine silica particles by use of a redox system consisting of ceric ion and reducing groups on the surface. Polymer Journal, 1989, 21, no. 6: 475–481. https://doi.org/10.1295/polymj.21.475.
50. Zheltonozhska T.B., Permiakova N.M., Kunytska L.R., Klymchuk D.O. Syntez mitseliarnykh nanokonteineriv ta nanoreaktoriv na osnovi blok- i pryshcheplenykh kopolimeriv ta polimer/neorhanichnykh hibrydiv, Rozdil 1.3. U knyzi: Bahatofunktsionalni nanomaterialy dlia biolohii ta medytsyny: molekuliarnyi dyzain, syntez ta vykorystannia/ Red. R.S. Stoika, Naukova Dumka: Kyiv, 2017, 36–67. ISBN: 978-966-00-1564-7.
51. Zheltonozhskaya T., Permyakova N., Eremenko B. Inter- and intramolecular polycomplexes in polydispersed colloidal systems, Chapter 8. In book: Hydrogen-bonded interpolymer complexes: formation, structure and application/ Eds. V. Khutoryanskiy, G. Staikos. World Scientific: New Jersey-London-Singapore etc., 2009, 201–234. ISBN-10: 9812707859; ISBN-13: 978-9812707857.
52. Mahapatra A.P., Samal R.K., Samal R.N., Roy G.S. Evaluation of Huggins’ constant, Kraemer’s constant and viscosity concentration coefficient of polymer dextran in urea, glycine and glucose. Physics and Chemistry of Liquids, 2001, 39, no. 2: 169–181. https://doi.org/10.1080/00319100108030337.
53. Sharma V., Chotia C., Tarachand, Ganesan V., Okram G.S. Influence of Particle Size and Dielectric Environment on Dispersion Behaviour and Surface Plasmon in Nickel Nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, no. 21: 14096–14106. https://doi.org/10.1039/C7CP01769C.
54. Zheltonozhskaya Т.B., Permyakova N.М., Fomenko A.S., Kunitskaya L.R., Klepko V.V., Grishchenko L.М., Klym-
chuk D.О. Formation of nickel nanoparticles in solutions of a hydrophilic graft copolymer. Polymer Journal, 2021, 43, no. 2: 79–94. https://doi.org/10.15407/polymerj.43.02079.
55. Glavee G.N., Klabunde K.J., Sorensen C.M., Hadjipanayis G.C. Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir, 1994, 10, no. 12: 4726–4730. https://doi.org/10.1021/la00024a055.