Полімерний журнал, 2022, Т.44, №3


ivanenko1.pdf

K.O. Ivanenko,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,

e-mail: k_ivanenko@i.ua

ORCID: 0000-0002-5637-9633

A.М. FAINLEIB,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,

e-mail: fainleib@i.ua

ORCID: 0000-0001-8658-4219

Polym. J., 2022, 44, no. 3: 165-187.

Section: Review.

Language: Ukrainian.


Abstract:

This article is a review of the Mn+1AXn phases (“MAX phases”, where n = 1, 2 or 3), their MXene derivatives and the reinforcement of polymers with these materials. The MAX phases are a class of hexagonal-structure ternary carbides and nitrides (“X”) of the transition metal (“M”) and the A-group element. The unique combination of chemical, physical, electrical and mechanical properties that combine the characteristics of metals and ceramics is of interest to researchers in the MAX phases. For example, MAX phases are typically resistant to oxidation and corrosion, elastic, but at the same time, they have high thermal and electrical conductivity and are machinable. These properties stem from an inherently nanolaminated crystal structure, with Mn+1Xn slabs intercalated with pure A-element layers. To date, more than 150 MAX phases have been synthesized. In 2011, a new family of 2D materials, called MXene, was synthesized, emphasizing the connection with the MAX phases and their dimension. Several approaches to the synthesis of MXene have been developed, including selective etching in a mixture of fluoride salts and various acids, non-aqueous etching solutions, halogens and molten salts, which allows the synthesis of new materials with better control over the chemical composition of their surface. The use of MAX phases and MXene for polymer reinforcement increases their thermal, electrical and mechanical properties. Thus, the addition of fillers increases the glass transition temperature by an average of 10%, bending strength by 30%, compressive strength by 70%, tensile strength up to 200%, microhardness by 40%, reduces friction coefficient and makes the composite material self-lubricating, and 1 % wt. MAX phases increases thermal conductivity by 23%, Young’s modulus increases. The use of composites as components of sensors, electromagnetic protection, wearable technologies, in current sources, in aerospace and military applications, etc. are proposed.

Key words: MAX phase, MXene, nanolaminate, oxygen-free ceramics, polymer, composite material, nanocomposite.

REFERENCES

1. Nowotny H., Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem., 1971, 5: 27–70. https://doi.org/10.1016/0079-6786(71)90016-1.

2. Jeitschko W., Nowotny H., Benesovsky F. Kohlenstoffhaltige ternäre Verbindungen (H-Phase). Monatshefte für Chemie, 1963, 94, no. 4: 672–676. https://doi.org/10.1007/BF00913068.

3. Jeitschko W., Nowotny H., Benesovsky F. Kohlenstoffhaltige ternäre Verbindungen (V-Ge-C, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C). Monatshefte für Chemie, 1963, 94, no. 5: 844–850. https://doi.org/10.1007/BF00902358.

4. Jeitschko W., Nowotny H., Benesovsky F. Ti2AlN, eine Stickstoffhaltige H-Phase. Monatshefte für Chemie, 1963, 94, no.6: 1198–1200. https://doi.org/10.1007/BF00905710.

5. Jeitschko W., Nowotny H., Benesovsky F. Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC. Monatshefte für Chemie, 1964, 95, no.1: 178–179. https://doi.org/10.1007/BF00909264.

6. Jeitschko W., Holleck H., Nowotny H., Benesovsky F. Phasen mit aufgefülltem Ti2Ni-Typ. Monatshefte für Chemie, 1964, 95, no. 3: 1004–1006. https://doi.org/10.1007/BF00908814.

7. Jeitschko W., Nowotny H., Benesovsky F. Die H-phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und TajGaC. Monatshefte für Chemie, 1964, 95, no. 2: 431–435. https://doi.org/10.1007/BF00901306.

8. Jeitschko W., Nowotny H., Benesovsky F. Die H-Phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC. Monatshefte für Chemie, 1963, 94, no. 6: 1201–1205. https://doi.org/10.1007/BF00905711.

9. Boiler H., Nowotny H. Röntgenographische Untersuchungen im System: Vanadin-Arsen-Kohlenstoff. Monatshefte für Chemie, 1966, 97, no. 4: 1053–1058. https://doi.org/10.1007/BF00903553.

10. Reiffenstein E., Nowotny H., Benesovsky F. Strukturchemische und magnetochemische Untersuchungen an Komplexcarbiden. Monatshefte für Chemie, 1966, 97, no. 5: 1428–1436. https://doi.org/10.1007/BF00902593.

11. Jeitschko W., Nowotny H. Die Kristallstruktur von Ti3SiC2 – ein neuer Komplexcarbid-Typ. Monatshefte für Chemie, 1967, 98, no. 2:329–337. https://doi.org/10.1007/BF00899949.

12. Wolfsgruber H., Nowotny H., Benesovsky F. Die Kristallstruktur von Ti3GeC2. Monatshefte für Chemie, 1967, 98, no. ? 2403–2405. https://doi.org/10.1007/BF00902438.

13. Beckmann O., Boiler H., Nowotny H. Neue H-Phasen. Monatshefte für Chemie, 1968, 99, no. 4: 1580–1583. https://doi.org/10.1007/BF00902709.

14. Boiler H., Nowotny H. Die Kristallstruktur von V2PC und V5P3N. Monatshefte für Chemie, 1968, 99, no. 2: 672–675. https://doi.org/10.1007/BF00901220.

15. Beckmann O., Boiler H., Nowotny H., Benesovsky F. Einige Komplexcarbide und-nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N. Monatshefte für Chemie, 1969, 100, no. 6: 1465–1470. (1969). https://doi.org/10.1007/BF00900159.

16. Nowotny H., Windisch S. High Temperature Compounds. Annual Review of Materials Science, 1973, 3: 171–194.

17. Schuster J. C., Nowotny H., Vaccaro C. The Ternary Systems: Cr–Al–C, V–Al–C and Ti–Al–C and the Behavior of the H-phases (M2A1C). J. of Solid State Chem., 1980, 32: 213–219. https://doi.org/10.1016/0022-4596(80)90569-1.

18. Barsoum M.W. The Mn+1AXn: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid St. Chem., 2000, 28: 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6.

19. Eklund P., Beckers M., Jansson U., Högberg H., Hultman L. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 2010, 518, no. 8: 1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184.

20. Pietzka M.A., Schuster J.C. Summary of Constitution Data of the System Al–C–Ti. J. Phase Equilibria, 1994, 15, no. 4: 392–400. https://doi.org/10.1007/BF02647559

21. Pietzka M. A., Schuster J. C. The Ternary Boundary Phases of the Quaternary System Ti-Al-C-N. In Book: Concerted Action on Materials Science, Leuven Proceedings, Part A, Commission of the European Communities, Brussels, Belgium, 1992.

22. Barsoum M. W., Farber L., Levin I., Procopio A., El-Raghy T., Berner A. HRTEM of Ti4AlN3; or Ti3Al2N2 Revisited. J. Amer. Cer. Soc., 1999, 82: 2545–2547. https://doi.org/10.1111/j.1151-2916.1999.tb02117.x.

23. Procopio A. T., El-Raghy T., Barsoum M. W. Synthesis of Ti4AlN3 and Phase Equilibria in the Ti-Al-N System. Met. Mater. Trans. A, 2000, 31, no. 2: 373–378. https://doi.org/10.1007/s11661-000-0273-1.

24. Procopio A. T., Barsoum M. W., El-Raghy T. Characterization of Ti4AlN3. Met. Mater. Trans. A, 2000, 31, no. 2: 333–337. https://doi.org/10.1007/s11661-000-0268-y.

25. Aryal S., Sakidja R., Barsoum M.W., Ching W.-Y. A genomic approach to the stability, elastic, and electronic properties of the MAX phases, Phys. Status Solidi B, 2014, 251, no. 8: 1480–1497. https://doi.org/10.1002/pssb.201451226.

26. Farber L., Levin I., Barsoum M. W., El-Raghy T., Tzenov T. High-resolution transmission electron microscopy of some Tin+1AXn compounds (N=1, 2; A=Al or Si; X=C or N). Journal of Applied Physics, 1999. 86, no.5: 2540–2543. https://doi.org/10.1063/1.371089.

27. Rawn C.J., Barsoum M.W., El-Raghy T., Procipio A., Hoffmann C.M., Hubbard C.R. Structure of Ti4AlN3 – a layered Mn+1AXn nitride. Materials Research Bulletin, 2000. 35: 1785– 1796. https://doi.org/10.1016/S0025-5408(00)00383-4.

28. https://en.wikipedia.org/wiki/MAX_phases.

29. Barsoum M.W., El-Raghy T. The MAX Phases: Unique New Carbide and Nitride Materials. American Scientist, 2001, 89, no. 4: 334–343. https://doi.org/10.1511/2001.28.736.

30. El-Raghy T., Zavaliangos A., Barsoum M.W., Kalidindi S.R. Damage Mechanisms around Hardness Indentations in Ti3SiC2. J. Am. Ceram. Soc., 1997, 80, no. 2: 513–516. https://doi.org/10.1111/j.1151-2916.1997.tb02861.x.

31. Barsoum M.W., Farber L., El-Raghy T. Dislocations, Kink Bands, and Room-Temperature Plasticity of Ti3SiC2. Metallurgical and materials transactions A. 1999, 30: 1727–1738. https://doi.org/10.1007/s11661-999-0172-z.

32. Kooi B.J., Poppen R.J., Carvalho N.J.M., De Hosson J.Th.M., Barsoum M.W. Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Materialia, 2003, 51: 2859–2872. doi:10.1016/S1359-6454(03)00091-0.

33. Prikhna T.A., Dub S.N., Starostina A.V., Karpets M.V., Cabiosh T., Chartier P. Mechanical properties of materials based on MAX phases of the Ti-Al-C system. Journal of Superhard Materials, 2012, 34, no. 2: 102–109. https://doi.org/10.3103/S1063457612020049.

34. Magnuson M., Tengdelius L., Greczynski G., Eriksson F,. Jensen J., Lu J., Samuelsson M., Eklund P., Hultman L., Hogberg H. Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target. J. Vac. Sci. Technol. A. 2019, 37, no. 2: 021506. doi:10.1116/1.5065468. ISSN 0734-2101.

35. Yin X., Chen K., Zhou H., Ning X. Combustion Synthesis of Ti3SiC2/TiC Composites from Elemental Powders under High-Gravity Conditions. Journal of the American Ceramic Society, 2010, 93, no. 8: 2182–2187. doi:10.1111/j.1551-2916.2010.03714.x.

36. Hanaor D.A.H., Hu L., Kan W.H., Proust G., Foley M., Karaman I., Radovic M. Compressive performance and crack propagation in Al alloy/Ti2AlC composites. Materials Science and Engineering: A, 2016, 672: 247–256. https://doi.org/10.1016/j.msea.2016.06.073.

37. Arunajatesan S., Carim A.H. Synthesis of Titanium Silicon Carbide. Journal of the American Ceramic Society, 1995, 78, no. 3: 667–672. doi:10.1111/j.1151-2916.1995.tb08230.x.

38. Gao N. F., Miyamoto Y., Zhang D. Dense Ti3SiC2 prepared by reactive HIP. Journal of Materials Science, 1999, 34, no. 18: 4385–4392. doi:10.1023/A:1004664500254.

39. Li S.-B., Zhai H.-X. Synthesis and Reaction Mechanism of Ti3SiC2 by Mechanical Alloying of Elemental Ti, Si, and C Powders. Journal of the American Ceramic Society, 2005, 88, no. 8: 2092–2098. doi:10.1111/j.1551-2916.2005.00417.x.

40. Dash A., Vaßen R., Guillon O., Gonzalez-Julian J. Molten salt shielded synthesis of oxidation prone materials in air. Nature Materials. 2019, 18, no. 5: 465–470. doi:10.1038/s41563-019-0328-1.

41. Li M., Li Y.-B., Luo K., Lu J., Eklund P., Persson P., Rosen J., Hultman L., Du S.-Y. Synthesis of Novel MAX Phase Ti3ZnC2 via A-site-element-substitution Approach. Journal of Inorganic Materials, 2019, 34, no. 1: 60–64. doi:10.15541/jim20180377.

42. Li M. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society. 2019, 141, no. 11: 4730–4737. doi:10.1021/jacs.9b00574.

43. Li Y., Li M., Lu J., Ma B., Wang Z., Cheong L.-Z., Luo K., Zha X., Chen K., Persson P.O.Å., Hultman L., Eklund P., Shen C., Wang Q., Xue J., Du S., Huang Z., Chai Z., Huang Q. Single-Atom-Thick Active Layers Realized in Nanolaminated Ti3(AlxCu1–x)C2 and Its Artificial Enzyme Behavior. ACS Nano, 2019, 13, no. 8: 9198–9205. https://doi.org/10.1021/acsnano.9b03530.

44. Ding H., Li Y., Lu J., Luo K., Chen K., Li M., Persson P. O.Å., Hultman L., Eklund P., Du S., Huang Z., Chai Z., Wang H., Huang P., Huang Q. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7, no. 12: 510–516. DOI: 10.1080/21663831.2019.1672822.

45. Ivchenko V.I., Kosolapova T.Y. Conditions of Preparation of Ternary Ti-C-Al alloy Powders. Soviet Powder Metallurgy and Metal Ceramics, 1975, 14, no. 6: 431–433. https://doi.org/10.1007/BF00823497.

46. Ivchenko V. I., Lesnaya M. I., Nemchenko V. F., Kosolapova T. Y. Preparartion and Some Properties of the Ternary Compound Ti2AlN. Soviet Powder Metall Met Ceram, 1976, 15, no. 4: 293–295. https://doi.org/10.1007/BF01178200.

47. Ivchenko V. I., Lesnaya M. I., Nemchenko V. F., Kosolapova T. Y. Some Physical Properties of Ternary Compounds in the System Ti-Al-C. Soviet Powder Metallurgy and Metal Ceramics, 1976, 15, no. 5: 367–369. doi: 10.1007/bf00806472.

48. Ivchenko V. I., Kosolapova T. Y. Abrasive Properties of the Ternary Compounds in the System Ti-Al-C and Ti-Al-N. Soviet Powder Metall Met Ceram, 1976, 15, no. 8: 626–628. https://doi.org/10.1007/BF01159451.

49. Nickl J. J., Schweitzer K. K., Luxenburg P. Gasphasenabscheidung im Systeme Ti-C-Si. Journal of Less Common Metals, 1972. 26, no. 3: 335–353. https://doi.org/10.1016/0022-5088(72)90083-5.

50. Gray V. Ti3SiC2 and Ti3AlC2 Single Crystal Elastic Shear Modulus: Investigation via Inelastic Neutron Scattering and Computer Simulation. Dissertation in fulfilment of the academic degree Doctor of Philosophy. Faculty of Engineering and Built Environment, University of Newcastle. 2013.

51. Prikhna T.A., Dub S.N., Savchuk Ya.M., Petrusha I.A., Starostina A.V., Melnikov V.S., Kozyrev A.V., Nagorny P.A., Katrusha A.N., Firstov S.A., Ivanova I.I., Karpets M.V., Joulain A., Rabier J., Cobioch T., Tolmacheva G.N., Schmidt Ch. Sintering of MAX materials. Abstracts for International Conference on Sintering, IX ISC-2009, September 7–11, 2009, Kiev, Ukraine.

52. Starostina A.V., Prikhna T.A., Karpets M.V., Dub S.N., Chartier P., Cabiosh T., Sverdun V.B., Moshchil’ V.E., Kozyrev A.V. Synthesis of ternary compounds of the Ti-Al-C system at high pressures and temperatures. J. Superhard Mater, 2011, 33, no. 5: 307. https://doi.org/10.3103/S1063457611050042.

53. Prikhna T. A., Starostina A. V., Petrusha I. A., Ivakhnenko S. A., Borimskii A. I., Filatov Yu. D., Loshak M. G., Serga M. A., Tkach V. N., Turkevich V. Z., Sverdun V. B., Klimenko S. A., Turkevich D. V., Dub S. N., Basyuk T. V., Karpets M. V., Moshchil’ V. E., Kozyrev A. V., Il’nitskaya G. D., Kovylyaev V. V., Lizkendorf D., Cabiosh T., Chartier P. Studies of the oxidation stability, mechanical characteristics of materials based on MAX phases of the Ti–Al–(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing. Journal of Superhard Materials, 2014, 36, no. 1: 9–17. https://doi.org/10.3103/S106345761401002X.

54. Prikhna T., Cabiosh T., Gawalek W., Ostash O., Lizkendorf D., Dub S., Loshak M, Sverdun V., Chartier P., Basyuk T., Moshchil V., Kozyrev A., Karpets M., Kovylaev V., Starostina A., Turkevich D. Study of the thermal stability and mechanical characteristics of MAX phases of Ti-Al-C(N) system and their solid solutions. Advances in Science and Technology, 2014, 89: 123–128. https://doi.org/10.4028/www.scientific.net/AST.89.123.

55. Novikov M.V., Prikhna T.O., Kozyriev A.V., Starostina O.V., Sverdun V.B., Basiuk T.V., Moschil V.Ye., Serhiienko N.V., Cabiosh T., Chartier P. Process for the production of MAX-material. Ukrainian Patent 87477, February 10, 2014.

56. Prikhna T.O., Novikov M.V., Kozyriev A.V., Moschil V.Ye., Basiuk T.V., Starostina O.V., Sverdun V.B., Serhiienko N.V., Cabiosh T., Chartier P. Process for compaction of ceramic materials based on MAX-phases under high pressure. Ukrainian Patent 91034, June 25, 2014.

57. Novikov M.V., Prikhna T.O., Kozyrev A.V., Starostina O.V., Sverdun V.B., Basiuk T.V., Moschil V.Ye., Serhiienko N.V., Cabioch’ T., Chartier P. Process for the production of MAX-material based on tertiary titanium and aluminium carbides. Ukrainian Patent 109174, July 27, 2015.

58. Ostash O.P., Prihna T.O., Ivasyshyn A.D., Podhurska V.Ya., Basuk T.V., Vasyliiev O.D., Brodnikovskyy E.M. Material for manufacturing connection elements of the solid oxide fuel cells. Ukrainian Patent 111082, March 25, 2016.

59. Ivasyshyn А., Ostash O., Prikhna T., Podhurs’ka V., Basyuk T. Influence of Technological Media on the Mechanical and Physical Properties of Materials for Fuel Cells. Materials Science, 2015, 51: 149–157. https://doi.org/10.1007/s11003-015-9822-z.

60. Ivasyshyn A., Ostash O., Prikhna T., Podhurska V., Basyuk T. Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air. Nanoscale Research Letters, 2016, 11: 358. https://doi.org/10.1186/s11671-016-1571-x.

61. Ivasyshyn A.D., Ostash O.P., Prikhna T.O., Podhurska V.Y., Basyuk T.V. () Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 6°C in Air. Springer Proceedings in Physics, 2016, 183: 551–557. https://doi.org/10.1007/978-3-319-30737-4_45.

62. Podhurska V., Vasyliv B., Ivasyshyn A., Ostash O., Vasylyev O., Prikhna T., Sverdun V., Brodnikovskyi Y. Behaviour of Solid Oxide Fuel Cell Materials in Technological Environments. French-Ukrainian Journal of Chemistry, 2018, 6: 115. https://doi.org/10.17721/fujcV6I1P115-127.

63. Vovk R.V., Khadzhai G.Ya., Prikhna T.A., Gevorkyan E.S., Kislitsa M.V., Soloviev A.L., Goulatis I.L., Chroneos A. Charge and heat transfer of the Ti3AlC2 MAX phase. Journal of Materials Science: Materials in Electronics. 2018, no. 29: 11478–11481. https://doi.org/10.1007/s10854-018-9242-6.

64. Prikhna T., Ostash O., Sverdun V., Karpets M., Zimych T., Ivasyshin A., Cabioch’T., Chartier P., Dub S., Javorska L., Podgurska V., Figel P., Cyboroń J., Moshchil V., Kovylaev V., Ponomaryov S., Romaka V., Serbenyuk T., Starostina A. Presence of oxygen in Ti-Al-C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures. Acta Physica Polonica A. 2018, 133, no. 4: 789–793. https://doi.org/10.12693/APhysPolA.133.789.

65. Boyko Yu.I., Bogdanov V.V., Vovk R.V., Gevorkyan E.S., Kolesnichenko V.A., Korshak V.F., Prikhna T.A. Thermal and crack resistance of ceramics based on the MAX phase Ti3AlC2. Funct. Mater. 2018, 25, (4): 708–712. https://doi.org/10.15407/fm25.04.708.

66. Prikhna Т.О., Podhurs’ka V.Ya., Оstash О.P., Vasyliv B.D., Sverdun V.B., Karpets’ М.V., Serbenyuk Т.B. Influence of the technology of production of composites based on the max phases of titanium on the process of wear in contact with copper. Part 1. Two-stage technology. Materials Science, 2019, 54, no. 4: 589–595. https://doi.org/10.1007/s11003-019-00222-1.

67. Prikhna Т.О., Podhurs’ka V.Ya., Оstash О.P., Vasyliv B.D., Sverdun V.B., Karpets’ М.V., Serbenyuk Т.B. Influence of the Technology of Production of Composites Based on the MAX Phases of Titanium on the Process of Wear in Contact with Copper. Part 2. Single-Stage Technology. Materials Science, Vol. 55, No. 1, July 2019. P. 1–8. https://doi.org/10.1007/s11003-019-00222-1.

68. Gogotsi G.A., Galenko V.I., Prikhna T.A. Local fracture of nanolaminates: edge chipping test. Strength of Materials, 2020, 52, no. 3: 381–385. https://doi.org/10.1007/s11223-020-00188-5.

69. Karpinos B. S., Kulish V. M., Prikhna T. O. Thermostressed state of a nozzle vane from max phase ceramics. Strength of Materials, 2020, 52, no. 5: 738–745. https://doi.org/10.1007/s11223-020-00227-1.

70. Kuprin A.S., Prikhna T.A., Reshetnyak E.N., Bortnitskaya M.A., Kolodiy I.V., Belous V.A., Dub S.N., Ilchenko A.V., Sverdun V.B. Coating Deposition by Ion-plasma Sputtering of MAX Phase Ti2AlC Target. Journal of nano- and electronic physics, 2020, 12, no 5: 05011(6pp). DOI: 10.21272/jnep.12(5).05011.

71. Оstash О.P., Prikhna T.O., Kuprin O.S., Podhurs’ka V.Ya., Sverdun V.B., Vasyliv B.D. Method of making thin-walled connecting cells of solid oxide fuel cells. Ukrainian Patent 121831, July 27, 2020.

72. Dub S. N., Tyurin A. I., Prikhna T. A. Creep and viscoelasticity of Ti3AlC2 MAX-phase at room temperature. Journal of Superhard Materials, 2020, 42, no. 5: 12–22. https://doi.org/10.3103/S1063457620050147.

73. Kirian I.M., Voynash V.Z., Lakhnik A.M., Marunyak A.V., Kochelab Yе.V., Rud A.D. Synthesis of Ti3AlC2 MAX-Phase with Different Content of B2O3 Additives, Metallophysics and Advanced Technologies, 2019, 41, no. 10: 1273–1281. https://doi.org/10.15407/mfint.41.10.1273.

74. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011, 23, no. 37: 4248–4253. https://doi.org/10.1002/adma.201102306.

75. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M.W. Two-dimensional transition metal carbides. ACS Nano. 2012, 6, no. 2: 1322–1331. DOI: 10.1021/nn204153h.

76. Naguib M., Halim J., Lu J., Cook K.M., Hultman L., Gogotsi Yu., Barsoum M.W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135: 15966−15969. doi.org/10.1021/ja405735d.

77. Naguib M., Mochalin V.N., Barsoum M.W., Gogotsi Yu. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26: 992–1005. DOI: 10.1002/adma.201304138.

78. Li Z., Wang L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 2015, 191: 33–40. https://doi.org/10.1016/j.mseb.2014.10.009.

79. Sun D., Wang M., Li Z., Fan G., Fan L.-Z., Zhou A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47: 80–83, https://doi.org/10.1016/j.elecom.2014.07.026.

80. Ghidiu M., Lukatskaya M., Zhao M.-Q., Gogotsi Yu., Barsoum M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78–81. https://doi.org/10.1038/nature13970.

81. Halim J., Lukatskaya M.R., Cook K.M., Lu J., Smith C.R., Näslund L.-Å., May S.J., Hultman L., Gogotsi Yu., Eklund P., Barsoum M.W. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26, no. 7: 2374–2381. https://doi.org/10.1021/cm500641a.

82. Ghidiu M., Naguib M., Shi C., Mashtalir O., Pan L.M., Zhang B., Yang J., Gogotsi Y., Billinge S.J.L., Barsoum M.W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50: 9517–9520. https://doi.org/10.1039/C4CC03366C.

83. Karlsson L.H., Birch J., Halim J., Barsoum M.W., P. Persson O.Å. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, no. 8: 4955–4960. https://doi.org/10.1021/acs.nanolett.5b00737.

84. Naguib M., Unocic R.R., Armstrong B.L., Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44: 9353–9358. https://doi.org/10.1039/C5DT01247C.

85. Wang L., Zhang H., Wang B., Shen C., Zhang C., Hu Q., Zhou A., Liu B. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12: 702–710. https://doi.org/10.1007/s13391-016-6088-z.

86. Sun W., Shah S.A., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M.J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A, 2017, 5: 21663–21668. https://doi.org/10.1039/C7TA05574A.

87. Anasori B., Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes). Springer, Cham, Switzerland 2019. ISBN: 978-3-030-19025-5. https://doi.org/10.1007/978-3-030-19026-2.

88. Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, no. 1: 80–115. DOI: 10.1080/15583724.2020.1729179.

89. Kausar A. Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 2021, 60, no. 13: 1377–1392. DOI: 10.1080/25740881.2021.1906901.

90. Sreenilayam S.P., Ahad I.Ul, Nicolosi V., Brabazon D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43: 99–131. https://doi.org/10.1016/j.mattod.2020.10.025.

91. Naguib M., Barsoum M.W., Gogotsi Yu. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, no. 39: 2103393. DOI: 10.1002/adma.202103393.

92. Abdolhosseinzadeh S., Jiang X., Zhang H., Qiu J., Zhang C. (John). Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48: 214–240, https://doi.org/10.1016/j.mattod.2021.02.010.

93. Gogotsi Y., Huang Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, no. 4: 5775–5780. https://doi.org/10.1021/acsnano.1c03161.

94. Zhang X., Xu J., Wang H., Zhang J., Yan H., Pan B., Zhou J., Xie Y. Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti3Si0.75Al0.25C2, Angew. Chem. Int. Ed. 2013, 52: 4361–4365. DOI: 10.1002/anie.201300285.

95. Derradji M., Henniche A., Wang J., Dayo A.Q., Ouyang J.-hu, Liu W.-bin, Medjahed A. High Performance Nanocomposites from Ti3SiC2 MAX Phase and Phthalonitrile Resin, Polymer Composites, 2018, 39, no. 10: 3705–3711. https://doi.org/10.1002/pc.24401.

96. Henniche A., Derradji M., Wang J., Liu W.-bin, Ouyang J.-hu, Medjahed A. High-performance polymeric nanocomposites from phthalonitrile resin and silane surface–modified Ti3AlC2 MAX phase. High Performance Polymers, 2018, 30, no. 4: 427–436. https://doi.org/10.1177/0954008317699678.

97. Derradji M., Trache D., Henniche A., Zegaoui A., Medjahed A., Tarchoun A.F., Belgacemi R. On the preparation and properties investigations of highly performant MXene (Ti3C2(OH)2) nanosheets-reinforced phthalonitrile nanocomposites. Advanced Composites Letters, 2019, 28: 1–6. DOI: 10.1177/2633366X19890621.

98. Ting R.Y., Keller T.M., Price T.R., Poranski C.F. Characterization of the Cure of Diether-Linked Phthalonitrile Resins, Chapter 26. In book: Cyclopolymerization and Polymers with Chain-Ring Structures. Eds.: G.B. Butler, J.E. Kresta. Am. Chem. Sos. Symp. Ser., 1982, 195: 337–350. ISBN: 9780841207318. DOI: 10.1021/bk-1982-0195.ch026.

99. Keller T.M. Phthalonitrile-based high temperature resin. J. Polym. Sci.: Part A Polym. Chem., 1988, 26, no.12: 3199–3212. https://doi.org/10.1002/pola.1988.080261207.

100. Sastri S.B., Keller T.M. Phthalonitrile polymers: Cure behavior and properties. J. Polym. Sci. Part A Polym. Chem., 2000, 37, no. 13: 2105–2111. https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2105::AID-POLA25>3.0.CO;2-A.

101. Derradji M., Ramdani N., Gong L.D., Wang J., Xu X.D., Lin Z.W., Henniche A., Liu W.B. Mechanical, thermal, and UV-shielding behavior of silane surface modified ZnO-reinforced phthalonitrile nanocomposites. Polym. Adv. Technol., 2016, 27, no. 7: 882–888. https://doi.org/10.1002/pat.3744.

102. Derradji M., Ramdani N., Zhang T., Wang J., Gong L.D., Xu X.D., Lin Z.W., Henniche A., Rahoma H.K.S., Liu W.B. Effect of silane surface modified titania nanoparticles on the thermal, mechanical, and corrosion protective properties of a bisphenol-A based phthalonitrile resin. Prog. Org. Coat., 2016, 90: 34–43. https://doi.org/10.1016/j.porgcoat.2015.09.021.

103. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile-carbon fiber composites. Polym. Compos., 1996, 17, no. 6: 816–822. https://doi.org/10.1002/pc.10674.

104. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile-glass fabric composites. Polym. Compos., 1997, 18, no. 1: 48–54. https://doi.org/10.1002/pc.10260.

105. Keller T.M., Dominguez D.D. High temperature resorcinol-based phthalonitrile polymer. Polymer, 2005, 46, no. 13: 4614–4618. https://doi.org/10.1016/j.polymer.2005.03.068.

106. Zhang T., Wang J., Derradji M., Ramdani N., Wang H., Lin Z.W., Liu W.B., Synthesis, curing kinetics and thermal properties of a novel self-promoted fluorene-based bisphthalonitrile monomer. Thermochim. Acta., 2015, 602: 22–29. https://doi.org/10.1016/j.tca.2015.01.005.

107. Lee H., Neville K. Handbook of Epoxy Resins. New York: McGraw-Hill, 1967: 960. ISBN 978-0070369979.

108. Handbook of Benzoxazine Resins / Eds Hatsuo Ishida and Tarek Agag. Elsevier, Amsterdam, Netherlands, 2011: 661. ISBN 9780444537904.

109. Laskoski M., Neal A., Schear M.B., Keller T.M., Ricks-Laskoski H.L., Saab A.P. Oligomeric aliphatic–aromatic ether containing phthalonitrile resins. J. Polym. Sci. Part A: Polym. Chem., 2015, 53, no. 18: 2186–2191. https://doi.org/10.1002/pola.27659.

110. Laskoski M., Schear M.B., Neal A., Dominguez D.D., Ricks-Laskoski H.L., Hervey J. Improved synthesis and properties of aryl ether-based oligomeric phthalonitrile resins and polymers. Polymer, 2015, 67: 185–191. https://doi.org/10.1016/j.polymer.2015.04.071.

111. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High temperature phthalonitrile nanocomposites with silicon-based nanoparticles of different nature and surface modification: structure, dynamics, properties. Polymer, 2019, 165: 39–54. https://doi.org/10.1016/j.polymer.2019.01.020.

112. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High-temperature hybrid phthalonitrile / amino-MMT nanocomposites: synthesis, structure, properties. eXPRESS Polym. Lett., 2019, 13, no. 7: 656–672. https://doi.org/10.3144/expresspolymlett.2019.55.

113. Bershtein V.A., Fainleib A.M., Yakushev P.N., Kirilenko D.A., Melnychuk O.G. Super-heat-resistant polymer nanocomposites on the base of heterocyclic networks: structure and properties. Physics of the Solid State, 2019, 61, no. 8: 1494–1501. https://doi.org/10.1134/S1063783419080080.

114. Fainleib A. Heat-resistant polymer composite materials on a base of heterocyclic matrices. Polymer Journal (Ukraine), 2020, 42, no. 2: 71–84. https://doi.org/10.15407/polymerj.42.02.071.

115. Derradji M., Ramdani N., Zhang T., Wang J., Feng T.T., Wang H., Liu W.B. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des., 2015, 71: 48–55. https://doi.org/10.1016/j.matdes.2015.02.001.

116. Derradji M., Ramdani N., Zhang T., Wang J., Lin Z.W., Yang M., Xu X.D., Liu W.B. High thermal and thermomechanical properties obtained by reinforcing a bisphenol-A based phthalonitrile resin with silicon nitride nanoparticles. Mater. Lett., 2015, 149: 81–84. https://doi.org/10.1016/j.matlet.2015.02.122.

117. Derradji M., Ramdani N., Zhang T., Wang J., Gong L.D., Xu X.D., Lin Z.W., Henniche A., Rahoma H.K.S., Liu W.B. Thermal and mechanical properties enhancements obtained by reinforcing a bisphenol-a based phthalonitrile resin with silane surface-modified alumina nanoparticles/ Polym. Compos., 2015, 38, no. 8: 1549–1558. https://doi.org/10.1002/pc.23722.

118. Shan S., Chen X., Xi Z., Yu X., Qu X., Zhang Q. The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin. High Perform. Polym., 2017, 29: 113–123. https://doi.org/10.1177/0954008316631593.

119. Derradji M., Feng T., Wang H., Ramdani N., Zhang T., Wang J., Henniche A., Liu W.B. New oligomeric containing aliphatic moiety phthalonitrile resins: their mechanical and thermal properties in presence of silane surface-modified zirconia nanoparticles. Iran. Polym. J., 2016, 25, no. 6: 503–514. https://doi.org/10.1007/s13726-016-0442-8.

120. Derradji M., Wang J., Liu W.B. High performance ceramic-based phthalonitrile micro and nanocomposites. Mater. Lett., 2016, 182: 380–385. https://doi.org/10.1016/j.matlet.2016.06.110.

121. Kajohnchaiyagual J., Jubsilp C., Dueramae I., Rimdusit S. Thermal and mechanical properties enhancement obtained in highly filled alumina-polybenzoxazine composites. Polym. Compos., 2014, 35, no. 11: 2269–2279. https://doi.org/10.1002/pc.22892.

122. Barsoum M.W., El-Raghy T.J. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. Americ. Ceram. Soc., 1996, 79, no. 7: 1953–1956. https://doi.org/10.1111/j.1151-2916.1996.tb08018.x.

123. Mahesh K.V., Balanand S., Raimond R., Mohamed A.P., Ananthakumar S. Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers. Mater. Des., 2014, 63: 360–367. https://doi.org/10.1016/j.matdes.2014.06.034.

124. Vaisakh S.S., Mahesh K.V., Balanand S., Metz R., Hassanzadeh M., Ananthakumar S. MAX phase ternary carbide derived 2-D ceramic nanostructures [CDCN] as chemically interactive functional fillers for damage tolerant epoxy polymer nanocomposites. RSC Adv., 2015, 5, 16521–16531. https://doi.org/10.1039/C4RA16518G.

125. Johnson R.R., “Tribology Of Novel Multifunctional MAX Phase Composites” (2014). Theses and Dissertations. 1668. https://commons.und.edu/theses/1668.

126. Gupta S., Riyad M. F., Ghosh S., Dunnigan R. Novel solid-lubricant materials for multifunctional applications. SPE Plastics Research Online’s, 2016. DOI: 10.2417/spepro.006444.

127. Gupta S., Riyad M.F. Synthesis and tribological behavior of novel UHMWPE-Ti3SiC2 composites. Polym Compos., 2018, 39, no.1: 254–262. https://doi.org/10.1002/pc.23925.

128. Ghosh S. К.. On The Of Novel Multifunctional Max Reinforced Polymers (MRPS) Matrix Composites (2016) .Theses and Dissertations. 2019. https://commons.und.edu/theses/2019.

129. Hall K., Dey M., Matzke C., Gupta S.. Synthesis and characterization of novel polymer matrix composites reinforced with max phases (Ti3SiC2, Ti3AlC2, and Cr2AlC) or MoAlB by fused deposition modeling. International Journal of Ceramic Engineering & Science. 2019, 1, no. 3: 144–154. https://doi.org/10.1002/ces2.10020.

130. Huang Z., Wang S., Kota S., Pan Q., Barsoum M.W., Li C.Y. Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer, 2016, 102: 119–126 https://doi.org/10.1016/j.polymer.2016.09.011.

131. Zou Y., Fang L., Chen T., Sun M., Lu C., Xu Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers, 2018, 10, no. 5: 474. DOI: 10.3390/polym10050474.

132. Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, no. 1: 80−115. DOI: 10.1080/15583724.2020.1729179.

133. Gao L., Li C., Huang W., Mei S., Lin H., Ou Q., Zhang Y., Guo J., Zhang F., Xu S., Zhang H. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020, 32: 1703−1747. https://dx.doi.org/10.1021/acs.chemmater.9b04408.

134. Khan R., Andreescu S. MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications. Sensors, 2020, 20, no. 18: 5434; doi:10.3390/s20185434.

135. Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li., Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride (MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27: 1702807. https://doi.org/10.1002/adfm.201702807.

136. Zhang Y.Z., Lee K.H., Anjum D.H., Sougrat R., Jiang Q., Kim H., Alshareef H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, No. eaat0098. https://doi.org/10.1126/sciadv.aat0098.

137. Boota M., Anasori B., Voigt C., Zhao M.Q., Barsoum M.W., Gogotsi Y. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Adv. Mater. 2016, 28: 1517−1522. https://doi.org/10.1002/adma.201504705.

138. Qin L., Tao Q., Liu X., Fahlman M., Halim J., Persson P.O.Å., Rosen J., Zhang F. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 2019, 60: 734−742. https://doi.org/10.1016/j.nanoen.2019.04.002.

139. Qin L., Tao Q., El Ghazaly A., Fernandez-Rodriguez J., Persson P.O.Å., Rosen J., Zhang F. High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 2018, 28: 1703808. https://doi.org/10.1002/adfm.201703808.

140. Zhou Z., Liu J., Zhang X., Tian D., Zhan Z., Lu C. Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding. Adv. Mater. Interfaces 2019, 6: 1802040. https://doi.org/10.1002/admi.201802040.

141. Wang Q.-W., Zhang H.-B., Liu J., Zhao S., Xie X., Liu L., Yang R., Koratkar N., Yu Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29: 1806819. https://doi.org/10.1002/adfm.201806819.

142. Cao W.T., Chen F.F., Zhu Y.J., Zhang Y.G., Jiang Y.Y., Ma M.G., Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12: 4583−4593. https://doi.org/10.1021/acsnano.8b00997.

143. Jiang C., Wu C., Li X., Yao Y., Lan L., Zhao F., Ye Z., Ying Y., Ping J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59: 268−276. https://doi.org/10.1016/j.nanoen.2019.02.052.

babkina2.pdf

2. Ultraviolet protection and damping ability of transparent polyurethane materials with the components of different chemical nature

N.V. BABKINA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: nabab1906@gmail.com

ORCID: 0000-0002-1803-0887

L.O. VORONTSOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: la.voronzova@gmail.com

ORCID: 0000-0002-3792-9409

O.I. ANTONENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: antoks2870@gmail.com

ORCID: 0000-0002-6451-7499

L.F. KOSYANCHUK,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,

e-mail: lkosyanchuk@ukr.net,

ORCID: 0000-0002-3617-9538

T.D. IGNATOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,

e-mail: taya.ihnatova@gmail.com

ORCID: 0000-0001-8189-5683

L.V. KOBRINA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: kobrina.larisa@gmail.com

ORCID: 0000-0001-6801-0801

О.О. BROVKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: brovko@nas.gov.ua

ORCID: 0000-0003-0238-1137

Polym. J., 2022, 44, no. 3: 188-197.

Section: Review.

Language: English.

https://doi.org/10.15407/polymerj.44.03.188


Abstract:

This article is devoted to the study of the influence of the chemical nature of the components of polyurethane matrices (PU) on their optical and viscoelastic properties in order to obtain polymer materials that combine several different functional properties: high transparency, effective UV protection and high damping ability. PU matrices with different chemical structures of diisocyanate (aliphatic (hexamethylene diisocyanate) or aromatic (toluylene diisocyanate)) and oligodiol (oligoether (oligooxypropylene glycol) or oligoester (oligodiethylene glycol adipate)) blocks were synthesized. PU matrices with different molecular weights of ester (800 and 1500) were synthesized too. It was established that all PU matrices have a fairly high (~90 %) transmission coefficient in the range of visible wavelengths and UV blocking. However, the range of UV absorption significantly depends on the PU components. Matrices based on aliphatic diisocyanate absorb UV up to 250–280 nm. The UV absorption of PU matrices based on aromatic diisocyanate, regardless of the nature of their oligoester component and its molecular weight, undergoes a shift to the long-wavelength region – up to 300–400 nm, which is due to the presence of aromatic rings. For PUs with an aromatic component, the highest absorption in the UV region is observed for PUs based on oligoesters, which is explained by the greater absorption ability of ester groups relative to ether ones. It was found that PU matrix based on oligoester has better elastic properties, but the PU matrix based on oligoether is characterized by a wider temperature range of effective damping. The replacement of aliphatic diisocyanate with an aromatic one shifts the area of effective damping of PU material towards positive temperatures. Therefore, by changing the nature of PU components, as well as the molecular weight of the PU oligoester component, it is possible to obtain transparent materials with a wide temperature range of effective damping in combination with high protection against UV radiation.

Key words: polyurethane, ultraviolet protection, damping ability, viscoelastic properties, transparency.


REFERENCES

1. Engels H.-W., Pirkl H.-G., Albers R., Albach R.W., Krause J., Hoffmann A., Casselmann H., Dormish J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Intern. Ed., 2013, 52, no. 36: 9422–9441. https://doi.org/10.1002/anie.201302766.

2. Polyurethane Chemistry: Renewable Polyols and Isocyanates. Ram K. Gupta, Pawan K. Kahol (Eds). ACS Symposium Series, 1380. American Chemical Society: Washington, DC, 2021, 447 p. ISBN13: 9780841298408.

3. Kojio K., Nozaki S., Takahara A., Yamasaki S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J. Polym. Res., 2020, 27, no. 6: 140. https://doi.org/10.1007/s10965-020-02090-9.

4. Nakamura M., Aoki Y., Enna G., Oguro K., Wada H. Polyurethane damping material. J. Elastomers and Plastics, 2015, 47, no. 6: 515–522. https://doi.org/10.1177/0095244314526739.

5. Chen H., Zhou H.J., Liu D.J., Li Y.T.. The Effect of Polyester Structures on the Damping Property of Polyurethane Elastomers. Adv. Mat. Res., 2012, 581–582: 710–714. https://doi.org/10.4028/www.scientific.net/AMR.581-582.710.

6. Čulin J. Interpenetrating polymer network composites containing polyurethanes designed for vibration damping. Polimery, 2016, 61, no. 3: 159–165. https://dx.doi.org/10.14314/polimery.2016.159.

7. Bais A.F., Bernhard G., McKenzie R.L., Aucamp P.J., Young P.J., Ilyas M., Jöckel P., Deushi M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci., 2019, 18, no. 3: 602–640. https://doi.org/10.1039/C8PP90059K.

8. Andrady A.L., Pandey K.K., Heikkila A.M. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci., 2019, 18, no. 3: 804–825. https://doi.org/10.1039/C8PP90065E.

9. Calvo M.E., Castro Smirnov J.R., Míguez H. Novel Approaches to Flexible Visible Transparent Hybrid Films for Ultraviolet Protection. J. Polym. Sci., Part B: Polym. Phys., 2012, 50, no. 14: 945−956. https://doi.org/10.1002/polb.23087.

10. Jagajeevan Raj B.M., Nithin K.S., Shilpa K.N., Sachhidananda S., Sandeep S., Siddaramaiah H., Pushpalatha K. Mechanically flexible and visibly transparent polymer-based nanocomposites for UV-protective applications, Chapter 5. In book: Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications. Eds.: N.K. Subramani, H. Siddaramaiah, J.H. Lee. Elsevier, 2021: 117–134. https://doi.org/10.1016/B978-0-12-818484-4.00003-3

11. Zhang S., Zhang D., Bai H., Ming W. ZnO Nanoparticles Coated with Amphiphilic Polyurethane for Transparent Polyurethane Nanocomposites with Enhanced Mechanical and UV-Shielding Performance. ACS Appl. Nano Mater., 2020, 3, no. 1: 59−67. https://doi.org/10.1021/acsanm.9b01540.

12. Stroea L., Chibac-Scutaru A.-L., Melinte V. Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO2 Nanoparticles with UV-Shielding Features. Polymers, 2021, 13, no. 8: 1318 (1–17). https://doi.org/10.3390/polym13081318.

13. Huang R., Du X., Wang H., Cheng X., Du Z. Highly stretchable polyurethane coating based on functionalized cerium oxide nanoparticles for anti-corrosive/UV protection. J. Appl. Polym. Sci., 2022, 139, no. 15: art. 51927. https://doi.org/10.1002/app.51927.

14. Rahman M.M., Suleiman R., Zahir M.H., Helal A., Kumar A.M., Haq M.B. Multi Self-Healable UV Shielding Polyurethane/CeO2 Protective Coating: The Effect of Low-Molecular-Weight Polyols. Polymers, 2020, 12, no. 9: art. 1947. https://doi.org/10.3390/polym12091947.

15. Diffey B.L. Sources and measurement of ultraviolet radiation. Methods, 2002, 28, no. 1: 4–13. https://doi.org/10.1016/S1046-2023(02)00204-9.

16. Stagg H.E. Method for the determination of isocyanates. Analyst, 1946, 71, no. 849: 557–559. https://doi.org/10.1039/AN9467100557.

17. Yadav L.D.S. Ultraviolet (UV) and visible spectroscopy, Chapter 2. In book: Organic spectroscopy. Dordrecht: Springer, 2005: 7–51. https://doi.org/10.1007/978-1-4020-2575-4_2.

18 Workman J.Jr. The Handbook of Organic Compounds, Three-Volume Set: NIR, IR, R, and UV-Vis Spectra Featuring Polymers and Surfactants. Academic Press, 2000: 1493. ISBN-10: 0127635602.

19. Weise N.K., Bertocchi M.J., Wynne J.H., Long I., Mera A.E. High performance vibrational damping poly(urethane) coatings: Blending ‘soft’ macrodiols for improved mechanical stability under weathering. Prog. Org. Coat., 2019, 136: art. 105240. https://doi.org/10.1016/j.porgcoat.2019.105240.

20. Berns R.S. Billmeyer and Saltzman’s Principles of Color Technology, 4th Edition. Wiley, 2019: 272. ISBN: 978-1-119-36668-3.

21. Zhang Y., Zhang J. Protection materials: ultraviolet shielding, high energy visible light filtering and visible light transparency PETG composite films. Plast. Rub. Comp., 2015, 44, no. 9: 368–375, http:/doi.org/10.1179/1743289815Y.0000000032.

22. Gu P., Zhang M., Liu Z., Zhang J. Transparent EVA film with spectrally selective blocking capacity of ultraviolet and high-energy visible light. Plast. Rub. Comp., 2022. https://doi.org/10.1080/14658011.2021.2024646.

23. Nielson L.E. Mechanical Properties of Polymer and Composites. NY: M. Dekker, 1974: 556. ISBN 10 0824761837

24. Ferry J.D. Viscoelastic properties of polymers, 3th edition. Wiley, 1980: 662. ISBN 0-471-04894-1.

25. Hourston D.J., Schafer F.-U. Polyurethane/polystyrene one-shot interpenetrating polymer networks with good damping ability: Transition broadening through crosslinking, internetwork grafting and compatibilization. Polym. Adv. Techn., 1996, 7, no. 4: 273–280. https://doi.org/10.1002/(SICI)1099-1581(199604)7:4<273::AID-PAT520>3.0.CO;2-Q.

26. Babkina N.V., Lipatov Yu.S., Alekseeva T.T. Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives. Mech. Comp. Mat., 2006, 42, no. 4: 385–392. https://doi.org/10.1007 / s11029-006-0048-x.

27. Wang S.H., Zawadzki S., Akcelrud L. Morphology and Damping Behavior of Polyurethane/PMMA Simaltaneous Interpenetrating Networks. Mat. Res., 2001, 4, no. 1: 27–33. http://doi.org/10.1590/S1516-14392001000100007.

28. Kercha Yu.Yu. Fizicheskaya himiya poliuretanov. Kyiv: Nauk. Dumka, 1970: 234.

29. Irusta L., Fernandez-Berridi M.J. Aromatic oly(ether-urethanes): effect of the polyol molecular weight on the photochemical behavior. Polymer, 1999, 40: 4821–4831. https://doi.org/10.1016/S0032-3861(98)00708-3.

30. Irusta L., Fernandez-Berridi M.J. Photooxidative behaviour of segmented aliphatic polyurethanes. Pol. Degr. Stab., 1999, 63: no. 1: 113–119. https://doi.org/10.1016/S0141-3910(98)00073-1.

goncharuk3.pdf

3. MODIFICATION OF CERAMIC MEMBRANES BY PYROCARBON FROM CARBONIZED POLY(URETHANE UREA)S

V.V. GONCHARUK,

Dumanskii Institute of Colloid Chemistry and the Chemistry of Water of NAS of Ukraine, 42, Akademik Vernadsky boulevard, Kyiv, 03142, Ukraine

e-mail: honch@iccwc.kiev.ua

ORCID: 0000-0002-2835-1270

V.M. OGENKO,

Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine, 32/34, Akademik Palladin avenue, Kyiv, 03680, Ukraine

e-mail: vladimir.ogenko@gmail.com

ORCID: 0000-0002-3243-5960

L.V. DUBROVINA,

Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine, 32/34, Akademik Palladin avenue, Kyiv, 03680, Ukraine

Dumanskii Institute of Colloid Chemistry and the Chemistry of Water of NAS of Ukraine, 42, Akademik Vernadsky boulevard, Kyiv, 03142, Ukraine

e-mail: dubrovina@ua.fm

ORCID: 0000-0002-1094-3294

O.A. VYSHNEVSKYI,

Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of NAS of Ukraine, 34, Akademik Palladin avenue, Kyiv, 03142, Ukraine

e-mail: vyshnevskyy@i.ua

ORCID: 0000-0002-7206-2185

I.V. DUBROVIN,

Chuiko Institute of Surface Chemistry of the National Academy of NAS of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine

e-mail: dilvua@gmail.com

ORCID: 0000-0001-7236-9702

I.M. KRUCHKO,

Dumanskii Institute of Colloid Chemistry and the Chemistry of Water of NAS of Ukraine, 42, Akademik Vernadsky boulevard, Kyiv, 03142, Ukraine

e-mail: iryna.kruchko03@gmail.com

ORCID: 0000-0001-7226-3051

Polym. J., 2022, 44, no. 3: 198-204.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.03.198

Abstract:

Modification of tubular ceramic membranes made of clay minerals, which were obtained by slip casting (produced by the Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine) was carried out. The membranes were modified with pyrocarbon, which was obtained by carbonization of a precursor – poly(urethane urea)s. The carbonization precursor was synthesized from polyisocyanate (average functionality 2.7) and laprol grade 5003, which was introduced into the membrane by impregnation of the corresponding solutions in ethylacetate. When laprol reacts with polyisocyanate, three-dimensional polyurethane is formed. Since undried reagents were used, water entered the pores of the membrane, which reacted with the NCO groups of the polyisocyanate to form polyurea. The parallel course of these reactions leads to the formation of poly(urethane urea)s in the pores of the membrane. Carbonization was carried at 800 °C in an argon flow. The apparent density and open porosity of the membranes were determined by CCl4 uptake. After modification, the open porosity of the membrane decreased from 29.9 to 27.3 %, the apparent density increased from 1.86 to 1.87 g/cm3. The composition and structure of the membranes were studied by X-ray diffraction analysis and SEM. It is shown that the obtained modifier is pyrocarbon – the relative intensity of reflexes increases at 26,0 – 26,4 and 41,3 and 44,2° 2Θ. Pyrocarbon covers the surface of the pores with a continuous layer, and there are also three-dimensional formations of various shapes and sizes from several nm to several microns. Testing of modified membranes was carried out by water purification from direct scarlet dye and from Ca2+ of calcium chloride using the baromembrane method at a working pressure of 0.7 MPa. The unmodified membrane does not retain direct scarlet dye and Ca2+ at all. Tests of modified membranes have shown that the membranes acquire ultrafiltration properties. The retention factor (R) for direct scarlet dye is 100 % and 25 % for Ca2+.

Key words: ceramic membranes, polyisocyanate, laprol, pyrocarbon, water purification ultrafiltration.

REFERENCES

1. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation; Meeting the MDG drinking water and sanitation target: a mid-term assessment of progress. https://apps.who.int/iris/handle/10665/43021.

2. Anis S.F., Hashaikeh R., Hilala N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process Eng., December 2019, 32: 100941. https://doi.org/10.1016/j.jwpe.2019.100941.

3. Aani S.A., Tameem N., Mustaf T.N., Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade J. Water Process Eng., 2020, 35: 101241. https://doi.org/10.1016/j.jwpe.2020.1012411.

4. Park S.H., Park Y.G., Lim J-L., Lim J.-L., Kim S. Evaluation of ceramic membrane applications for water treatment plants with a life cycle cost analysis. Desalin. Water Treat. May 2015, 54, no. 4–5: 973. https://doi.org/10.1080/19443994.2014.912162.

5. Agoudjil N., Kermadi S., Larbot A. Synthesis of inorganic membrane by sol–gel process. Desalination, 2008, 223, no. 1–3: 417. https://doi.org/10.1016/j.desal.2007.01.187.

6. Arzani M., Mahdavi H.R., Sheikhi M., Mohammadi T., Bakhtiari O. Ceramic monolith as microfiltration membrane: preparation, characterization and performance evaluation. Appl. Clay Sci. September 2018, 161: 456. https://doi.org/10.1016/j.clay.2018.05.021.

7. Hubadillah S.K, Harun Z, Othman M.H.D, Ismail A.F., Salleh W.N.W., Basri H., Yunos M.Z., Gani P. Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: effect of kaolin content and non-solvent coagulant bath. Chem. Eng. Res. Des. August 2016, 112: 24. https://doi.org/10.1016/j.cherd.2016.06.007.

8. Rasouli Y., Abbasi M., Hashemif S.A. Fabrication, characterization, fouling behavior and performance study of ceramic microfiltration membranes for oily wastewater treatment. J. Asian Ceram. Soc., 2019, 7, no. 4: 476. https://doi.org/: 10.1080/21870764.2019.1667070.

9. Soldatov A.P., Rodionova I.A., Shkol’nikov E.I., Parenago O.P., Volkov V.V. The modification of inorganic composition membranes by pyrocarbon deposition. Rus. J. Phys. Chem. A, 2004, 78, no. 9: 1458.

10. Sazanov Yu.N., Gribanov A.V. Karbonizatsiya polimerov. SPb: Nauchnye Osnovy i Tekhnologii, 2013: 296.

11. Goncharuk V.V., Dubrovina L.V., Kucheruk D.D., Samsoni-Todorov A.O., Ogenko V.M., Dubrovin I.V. Water purification of dyes by ceramic membranes modified by pyrocarbon of carbonized polyisocyanate. J. Water Chem. and Technol., 2016, 38, no. 1: 34–38. https://doi.org/10.3103/S1063455X16010069.

12. Goncharuk V.V., Kucheruk D.D., Dubrovina L.V., Vyshnevskyi O.A., Dubrovin I.V., Ogenko V.M. Modificirovanie trubchatih keramicheskih membran pirouglerodom iz karbonizovannih polimerov. Ukr. Him. Jurn. 2019. 85, no. 6: 97. https://doi.org/10.33609/0041-6045.85.6.2019.97-103.

13. Volochko A.T., Podbolotov K.B., Dyatlova E.M. Ogneupornie i tugoplavkie keramicheskie materiali. Minsk: Belаrus. Nabyka, 2013: 385.

14. Bryk M.T., Tsapyuk E.A. Ultrafiltracija. Kyiv: Naukova Dumka: 1989: 288.

15. Saunders J., Frish K. Polyurethanes: Chemistry and Technology. Part I, Chemistry. New York: Wiley, New York, Interscience, 1962: 368.

16. Dymarchuk V.O., Ogenko V.M., Naboka O.V., Dubrovina L.V., Zaulychnyy Ya.V., Khyzhun O.Yu. Rentgenospektralne doslіdjennya elektronnoї strukturi pіrovuglecyu, oderjanogo karbonіzacіeyu toluіlendііzocіanatu v matricі visokodispersnogo dіoksidu kremnіyu. Dop. NAN Ukraini, 2008, no 8: 83.

kozak4.pdf

4. INFLUENCE OF MOISTURE ON THE SHORT-RANGE ORDERING OF CROSSLINKED GLYCOPOLYMERS BASED ON PLANT POLYSACCHARIDE KONJAC GLUCOMANNAN

N.V. KOZAK,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

ORCID: 0000-0001-6200-4048

S.D. NESIN,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

ORCID: 0000-0003-2162-3533

G.M. NESTERENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine

ORCID: 0000-0003-0070-6241

Polym. J., 2022, 44, no. 3: 205-213.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.03.205


Abstract:

Using X-ray diffraction data the short-range ordering was analyzed of the plant polysaccharide konjac glucomannan (KGM) and glycopolymers of different composition based on KGM and ε-caprolactam blocked isocyanates in the presence of saturated water vapor both for moistened and dried systems. The decrease in the values of the Breg’s period corresponding to the average distances between atoms and atomic groups in saturated water vapor is shown for glycopolymers placed under normal conditions. It was found that when the crosslinked KGM based glycopolymers are moistened, a secondary maximum is observed on the diffractograms, which corresponds to the ordering of the polysaccharide chains in the transverse direction. This secondary maximum was observed on the diffractograms of uncrosslinked KGM, but was absent on the initial diffractograms of crosslinked samples. This secondary maximum does not appear again on the diffractograms of dried glycopolymer samples. The influence of moisturizing-drying processes on the structuring and moisture content in polysaccharide and glycopolymers is analyzed. The results of WAXS correlate with thermogravimetry data on changes in the ability of KGM and KGM-based glicopolymers to retain moisture in humidified and dried systems. Using a nitroxyl paramagnetic probe, it has been demonstrated that the increase in molecular mobility of glycomolymers based on konjac glucomannan under the influence of low molecular weight plasticizer does not depend on isocyanate used. This effect allows correlating the irreversible effect of swelling and subsequent drying on the characteristics of these KGM-based systems with the achievement of macrochains of the polymer more equilibrium conformations due to increasing molecular mobility in the presence of moisture.

Key words: polysaccharide, blocked isocyanate, moisture, X-ray diffraction, thermogravimetry, paramagnetic probe.

REFERENCES

1. Kozak N., Hubina A. Biodegradation of polysaccharide xanthan-based polyurethane networks. Current trends in polym. scі., 2012, 16: 23–27.

2. Kozak N.V., Nizelskii Yu.M., Nesterenko H.M. Modification of polymer compositions using blocked isocyanates, Issues Chem.Chem.Techn., 2002, no. 3: 196–198.

3. Didenko K.S., Kozak N.V., Klepko V.V. Сross-linked polysaccharide konjac glucomannan: synthesis, characterization and phenol adsorption Polym. J.(Ukr) 2018, 40: 184–189. https://doi.org/10.15407/polymerj.40.03.184.

4. Kozak N.V., Didenko K.S., Klepko V.V. Preparation and characterization of phenol sorbents based on konjac glucomannan and water-soluble blocked isocyanates, Chemistry and Chemical Technology. 2017, 11: 70–76. https://doi.org/10.23939/chcht11.03.270.

5. N. V. Kozak, K. Didenko, H. Nesterenko, V. Klepko The influence of copper ion on thermooxidative destruction characteristics of polyglucaneurethane based on xanthan and caprolactame blocked polyisocyanate Polym. J. (Ukr.), 2015, 37: 151–156. https://doi.org/10.15407/polymerj.37.02.151

6. Kozak N., Hubina A. Polyglucanurethanes: cross-linked polyurethanes based on microbial exopolysaccharide xanthan, Chapter 19. In book: Polyurethane., Zafar F., Sharmin E. (Ed), Croatia: InTech, 2012: 431–447. http://dx.doi.org/10.5772/48007.

7. Didenko K.S., Kozak N.V., Bortnitskyi V.S., Komliakova O.M., Klepko V.V., Rukhailo M.V. The influence of structure and functionality of ε- caprolactam blocked isocyanates on their thermal properties (in Ukrainian), Ukr.Chem.J. 2016, 82:110–116.

8. Kozak N.V., Didenko K.S., Davidenko V.V., Klepko V.V Non-isothermal kinetics of ε-caprolactam blocked polyisocyanate thermal dissociation, Polym.J.(Ukr.), 2016, 38: 297–301. https://doi.org/10.15407/polymerj.38.04.297.

9. Hubina A.V., Kozak N.V., Gomza Yu.P., Lobko E.V. Influence of exopolysaccharide hydroxyl group content of exopolysaccharide on polyglucanurethane molecular dynamic and shor trange ordering (in Russian), Ukr.Chem.J., 2012, 77: 55–60.

10. Yakunin N.A., Zavadskii A.E. Structural changes in the amorphous phase of cotton cellulose upon its interaction with water vapor, Polim.Sci.A, 2004, 46, 1023–1030

11. Kozak N.V., Didenko K.S., Nesin S.D. The influence of plasticizer on dynamic characteristics and shortrange ordering of crosslinked glycopolymers based on water-soluble polysaccharides, Polym.J.(Ukr.), 2020, 42: 191–198. https://doi.org/10.15407/polymerj.42.03.191.

12. Pаt UA № 61307 A method for the preparation of blocked isocyanate product. Kozak N.V., Kosyanchuk L.F., Nizelʹsʹkyy Yu.M., Lipatov Yu.S., Nesterenko H.M., Nasvit Ya.O. Publ. 15.11. 2005.

13. Pаt UA № 115033, The method of obtaining sorbents for phenol based on crosslinked water-soluble polysaccharides Didenko K. S., Kozak N.V. Publ. 27.03.2017.

14. Pаt UA №80118, Blocked isocyanates as saccharide sorbents cross-linker Kozak N.V., Didenko K. S. Publ.13.05.2013.

15. Kozak N.V, Didenko K.S., Klepko V.V., Dmytrieva N.V.,Bortnytskii V.I. The interaction of the blocked polyisocyanate with konjac glucomanan (in Ukrainian),Ukr.Chem.J., 2014, 80: 119–123.

16. Lipatov Yu.S., Shilov V.V., Gomza Yu.P., Kruglyak N.E. X-ray methods for polymer systems studying.- К.: Nauk dumka, 1982.

17. Kozak N.V. The method of nitroxyl probes for the study of molecular dynamics and heterogeneous structure of metal-containing polymers, Polym. J.(Ukr), 2009, 31: 207–213.

nadtoka5.pdf

5. SYNTHESIS AND PROPERTIES OF CROSS-LINKED HYDROGELS BASED ON CHITOSAN AND POLYACRYLAMIDE

О.М. NADTOKA,

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine

e-mail: oksananadtoka@ukr.net

P.А. VIRYCH,

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine

e-mail: sphaenodon@ukr.net

N.V. KUTSEVOL,

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine

e-mail: kutsevol@ukr.net

Polym. J., 2022, 44, no. 3: 214-221.

Section: Polymer synthesis.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.03.214

Abstract:

The synthesis and physico-chemical properties of chemically cross-linked hydrogels based on polyacrylamide and chitosan, which form interpenetrating polymer networks, are considered in the work. The strategy of obtaining cross-linked networks of both polyacrylamide and polyacrylamide grafted on chitosan by radical polymerization was used. The equilibrium swelling properties, which depend on the pH value of the solution and the composition of the gels, were studied. The chemical structure of the obtained hydrogels was characterized by IR spectroscopy.

Key words: chemically cross-linked hydrogels, interpenetrating polymer networks, chitosan.REFERENCES

1. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 43: 3–12. https://doi.org/10.1016/S0169-409X(01)00239-3.

2. Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50: 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4.

3. Myung D., Waters D., Wiseman M., Duhamel P.E., Noolandi J., Ta C.N., Frank C. W. Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol., 2008, 19: 647–657. https://doi.org/10.1002/pat.1134.

4. Ignat L., Stanciu A. Advanced polymers: interpenetrating polymer networks. In Handbook of Polymer Blends and Composites. Ed.: A. K. Kulshreshtha and C. Vasile, Rapra Technology, 2003: 275–280.

5. Wang J.J., Liu F. Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation. Polym. Bull., 2013, 70: 1415–1430. https://doi.org/10.1007/s00289-013-0934-z.

6. Chivukula P., Dušek K., Wang D., Duškova-Smrcˇkova M., Kopecˇkova P., Kopecˇek J. Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials, 2006, 27: 1140–1151. https://doi.org/10.1016/j.biomaterials.2005.07.020.

7. Hoare T.R., Kohane D.S. Hydrogels in drug delivery: progress and challenges. Polymer, 2008, 49: 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.

8. Pillai C.K.S., Paul W., Sharma C.P .Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34, no. 7: 641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001.

9. Crini G., Badot P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batchstudies: a review of recent literature. Prog. Polym. Sci., 2008, 33: 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.

10. Wan Ngah W.S., Teong L.C., Hanafiah M.A.K.M. Adsorption of dyes and heavy metals by chitosan composites: a review. Carbohydr. Polym., 2011, 83: 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004.

11. Cai Z., Kim J. Cellulose–chitosan interpenetrating polymer network for electro-active paper actuator. J. Appl. Polym. Sci., 2009, 114: 288–297. https://doi.org/10.1002/app.30456.

12. Rokhade A.P., Patil S.A., Aminabhavi T.M. Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr. Polym., 2007, 67: 605–613. https://doi.org/10.1016/j.carbpol.2006.07.001.

13. Hoare T., Kohane D. Hydrogels in drug delivery: progress and challenges. Polymer, 2008, 49, no. 8: 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.

14. Bonina P., Petrova Ts., Manolova N. pH-sensitive hydrogels composed of chitosan and polyacrylamide – preparation and properties. J. Bioact. Compat. Polym., 2004, 19: 101–116. https://doi.org/10.1177/0883911504042642.

15. Alvarez-Lorenzo C., Concheiro A., Dubovik A.S., Grinberg N.V., Burova T.V., Grinberg V.Y. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J. Control. Release, 2005, 102: 629–641. https://doi.org/10.1016/j.jconrel.2004.10.021.

16. Ramesh Babu V., Hosamani K.M., Aminabhavi T.M. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr. Polym., 2008, 71: 208–217. https://doi.org/10.1016/j.carbpol.2007.05.039.

17. Ha Y.A., Lee E.M., Ji B.C. Mechanical properties of semi-interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate) copolymer and chitosan. Fibers. Polym., 2008, 9: 393–399. https://doi.org/10.1007/s12221-008-0063-8.

18. Nadtoka O., Virych P., Kutsevol N. Synthesis and absorption properties of hybrid polyacrylamide hydrogels. Mol. Cryst. Liq. Cryst., 2021, 719, no. 1: 84–93. https://doi.org/10.1080/15421406.2020.1862464.

19. Saber-Samandari S., Gazi M., Yilmaz E. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym. Bull., 2012, 68: 1623–1639. https://doi.org/10.1007/s00289-011-0643-4.

20. Yazdani-Pedram M., Retuert J., Quijada R. Hydrogels based on modified chitosan, Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol. Chem. Phys. 2000, 201: 923–930. https://doi.org/10.1002/1521-3935(20000601)201:9<923::AID-MACP923>3.0.CO;2-W.

21. Nadtoka O., Virych P., Kutsevol N. Investigation of Swelling Behavior of PAA and D-PAA Hydrogels. Springer Proceedings in Physics, 2020, 247: 47–60. https://doi.org/10.1007/978-3-030-52268-1_4.

Received 04.07.2022

denisenko6.pdf

6. DEVELOPMENT AND RESEARCH OF COMPOSITE MATERIALS WITH DACARBAZINE OF MEDICAL USING BASED ON POLYURETHANE FOAM UREAS

V.D. DENISENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: politoks@merlin.net.ua

ORCID: 0000-0003-3675-769X

R.A. ROZHNOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: rozhnovarita@gmail.com

ORCID: 0000-0002-5961-5750

N.A. GALATENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: galatenkonataliia@gmail.com

ORCID: 0000-0003-3284-3435

L.YU. NECHAEVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: l.ne4aeva@gmail.com

ORCID: 0000-0002-9715-5986

Polym. J., 2022, 44, no. 3: 222-230.

Section: Medical polymers.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.03.222

Abstract:

Developed a new composite material with Dacarbazine based on polyurethane foam (PPUS) The content of the drug substance Dacarbazine (DAC) in the composition was 0.5 wt. % and 1.0 wt.%. PPUS was obtained on the basis of a mixture of oligourethane diisocyanates (OUDIC) synthesized on the basis of 2,4-;2,6-toluene diisocyanate and polyoxypropylene glycols (POPG) MM 1002 and MM 2002 in a ratio of 1:1. Comparative physical and mechanical tests were performed. According to the obtained results, PPUS with DAC in the amount of 1 wt.% have physical and mechanical parameters (σ = 7.8, MPa, ε = 100% and σadhesion = 4.5 MPa), that will meet the requirements for replacement implants for ophthalmology. According to the results of IR spectroscopy, the possibility of chemical immobilization of Dacarbazine on the selected polymeric carrier was established. The thermophysical properties of the synthesized PPUS with Dacarbazine by DSC and TGA methods were studied. It was found that the glass transition temperature (Tg) is practically independent of the content of DAC. Tg PPUS with 0.5 wt.% DAC – (minus) 49.70 °C, Tg PPUS with 1.0 wt.% DAC – (minus) 50.09 °C. According to TGA, the obtained materials are characterized by the same heat resistance characteristics and practically do not depend on the content of DAC. The onset temperature of thermal decomposition (To) is in the range (290,96–298,61) °C and is accompanied by a slight weight loss (0.02–0.04 %). The temperature of maximum decomposition rate (Tmax ) is in the range (331.93–333.95) °C. According to the results of the dynamics of Dacarbazine release study from PPUS samples with a DAC content in the composition of 0.5 and 1.0 wt. % found that the composition of PPUS with a content of DAC 1 wt. % have a higher percentage of medicine, which on day 14 is ~ 64 %. The developed PPUS with Dacarbazine are promising materials for use as implants for ophthalmological surgery.

Key words: polyurethane foam urea, composite material, Dacarbazine, drug release, implant.

REFERENCES

1. Lipatova T.E., Pkhakadze G.A. Polymers in endoprosthesis. Naukova dumka, Kyiv 1983.

2. Galatenko N., Rozhnova R. Biologically active polymeric materials for medicine. Naukova dumka, Kyiv 2013.

3. Vislohuzova T., Rozhnova R., Galatenko N. Development and Research of Polyurethane Foam Composite Materials with Albucid. American Journal of Polymer Science and Technology 2021, 7, no. 3: 38–43. doi:10.11648/j.ajpst.20210703.11.

4. Vislohuzova T.V., Rozhnova R.A., Galatenko N.A. Development and research of polyurethane foam composite materials with lysocyme. Polymer Journal (Ukr.), 2021, 43, no. 3: 204–213.

5. Lebedev, Ye.V., Galatenko, N.A., Rozhnova, R.A., Kulesh, D.V. Serial production of domestic bioactive glue for medical purposes. Sci. innov. 2016, 12, no. 1: 54–57. doi:http://dx.doi.org/10.15407/scine12.01.054.

6. Patent US 5474779А, Bufius N., Galatenko N. Compositions for aiding in the regeneration of tissue with a prolonged immunomodulating effect. Publ. 12.12.1995.

7. Galatenko N.A., Rozhnova R.A., Kuliesh D.V., Visloguzova1 T.V., Maletskyy A.P., Bigun N.M. Response of soft tissues and abdominal organs of rabbits and rats to implanting albucid-containing cross-linked polyurethane composite. Journal ophthalmology, 2020, no. 6: 30–37. doi.org/10.31288/oftalmolzh202063037.

8. Galatenko N.A., Kuliesh D.V., Narazhaiko L.F., Grytsenko V.P., Zakashun T.Iu., Maletskyy A.P., Bigun N.M. Assessing in vitro cytotoxicity and pH of extracts of synthetic polymers made of cross-linked polyurethane composite with immobilized albucid. Journal of ophthalmology, 2020, no. 4: 56–61. http://doi.org/10.31288/oftalmolzh202045661.

9. Galatenko N.A., Kulyesh D.V., Maletskyi A.P., Karpenko O.S. Soft-tissue response to synthetic polymer implants made of crosslinked polyurethane and containing a biologically active substance, albucid or dacarbazine, in animals. Journal of Ophthalmology. 2018, no. 6: 52–48. DOI:10.31288/oftalmolzh201865258.

10. Shoaib M., Bahadur A. Synthesis of thermally and mechanically improved polyurethane-urea elastomers by using novel diamines as chain extenders. e-Polymers. 2016, 16, 5. https://doi.org/10.1515/epoly-2016-0134.

11. Wang Carl B., Cooper S. L. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules. 1983, 16, no. 5: 775–786. doi.org/10.1021/ma00239a014.

12. Mashkovsky’j M.D. Lekarstvennie sredstva, M: OOO Izdatel’stvo Novaya Volna, 16-е izd., 2012: 1216.

13. Bellami L. Infrakrasnyie spektryi molekul. Moskva: Izdatelstvo inostrannoy literatury, 1957, 444 р.

14. Funktsionalnyiy analiz organicheskih lekarstvennyih veschestv / A. I. Slivkin, N. P. Sadchikova, pod red. akademіka RAMN, prof. A. P. Arzamastseva. Voronezh: Voronezhskiy gosudarstvennyiy universitet, 2007: 426. ISBN 978-5-9273-1104-0.

primushko7.pdf

7. SYNTHESIS AND RESEARCH OF THE NEW POLYURETHANE UREAS THAT CONTAINE 1,8-DIAMINO-3,6-DIOXAOCTANE AS EXTENDER OF MACROCHAINE

S.O. PRYMUSHKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: politoks@merlin.net.ua

ORCID: 0000-0002-3623-1068

N.A. GALATENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: galatenkonataliia@gmail.com

ORCID: 0000-0002-5961-5750

R.A. ROZHNOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: rozhnovarita@gmail.com

ORCID: 0000-0003-3284-3435

G.A. KOZLOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: politoks@merlin.net.ua

ORCID: 0000-0001-8114-4812

I.I. GLADYR,

Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine

e-mail: politoks@merlin.net.ua

ORCID: 0000-0002-6248-2709

Polym. J., 2022, 44, no. 3: 231-238.

Section: Medical polymers.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.03.231

Abstract:

A number of polyurethane ureas (PUUs) containing 1,8-diamino-3,6-dioxooctane (DOODA) in their structure as a macrochain extender were synthesized with a different molar ratio of 4,4′-diaminodiphenylmethane (DADPh) to DOODA as 30:70; 50:50; 70:30. Synthesized polymers are elastic, transparent films with a thickness of 0.3 mm. According to the results of physical and mechanical tests, the tensile strength of the synthesized PUUs is in the range of (0.7-2.0) MPa, and the relative elongation at break is in the range of (73.9-584.7)%. The best physical and mechanical characteristics have the polymer synthesized with a ratio of DADPh:DOODA as 0.3:0.7 with a tensile strength of 2.0 MPa and a relative elongation of 522%. The formation of PUUs was confirmed by the method of IR-spectroscopy. Thermophysical properties synthesized by DSC, TGA methods were studied. It was established that the glass transition temperature (Tg) in a number of synthesized PUUs with DOODA is in the range from (minus) 18.50 °C to (minus) 34.52 °C. An increase in the content of 1,8-Diamino-3,6-dioxaoctane in the PUUs structure leads to a decrease in Tg and a slight increase in ΔCp during the second heating. According to the TGA, the heat resistance characteristics of the synthesized PUUs depend on the content of DOODA. When entering the structure of the PUUs DOODA, a decrease of the temperature of the start of the decomposition (T0) and the temperature of the maximal speed of the decomposition (Tmax), which is non-linear nature. T0 of the synthesized PUUs is in the range (275.16-289.8)°C and is accompanied by a slight loss of mass (0.007-0.093)%. Synthesized PUUs are heat-resistant to a temperature of 275.16 °C, which makes it possible to carry out dry sterilization of samples without changing their characteristics. Synthesized PUUs are promising materials for the immobilization of medicinal substances for further use in medicine.

Key words: polyurethane, polyurethane urea, 1,8-Diamino-3,6-dioxaoctane, 4,4′- diaminodiphenylmethane.

REFERENCES

1. Bae Y., Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers, Adv. Drug Deliv. Rev., 2009, 61: 768–784. https://doi.org/10.1016/j.addr.2009.04.016.

2. Yanchao W., Ruichao L., Jingiing L., Jinlin Ch. et al. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. J. Mater. Chem. B, 2021, 38, no. 9: 7979–7990. doi:10.1039/D1TB01236C.

3. Tetteh G., Khan A.S., Delaine-Smith R.M., Reilly G.C., Rehman O.U. Electrospun polyurethane/hydroxyapatitre bioactive Scaffords for bone tissue engineering: The role oddolventandhydroxyapatite particles. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39: 95–110. https://doi.org/10.1016/j.jmbbm.2014.06.019.

4. Galatenko N., Rozhnova R. Biologically active polymeric materials for medicine. Naukova

dumka, Kyiv 2013.

5. Rozhnova, R.A., Bondarchuk V.I., Savitskaia E.S., Levenets E.G., Popov V.A., Galatenko N.A. Replacement of bone defects with a polyurethane composition with hydroxyapatite high-filling. Likars’ ka Sprava, 2002, 1, no.1: 107–110.

6. Gogolevski S., Pennings A.J. An artificial skin based on biodegradable mixturesof polylactides and polyurethanes for full thickness skin wound covering. Makromol. Chem. Rapid. Commun., 1983, 4: 675–680. https://doi.org/10.1002/marc.1983.030041008.

7. Kucinska-Lipka J., Gubanska I., Pokrywczynska M., Cieslinski H., Filipowicz N., Cieslinski H., Filipowicz N., Drewa T., Janik H. Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications. J. Polymer Bulletin, 2018, 75: 1957–1979. doi: 10.1007/s00289-017-2124-x.

8. Fathi-Karkan S., Banimohamad-Shotorbani B., Saghati S., Rahbarghazi R., Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. Journal of Biological Engineering, 2022, 16, no. 6. https://doi.org/10.1186/s13036-022-00286-9.

9. Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng., 2016, 4, no. 2: 454–472, https://doi.org/10.1021/acsbiomaterials.5b00429.

10. Karpenko O.S., Kiseleva T.O., Galatenko N.A. Synthesis of new polyurethaneureas with decametoxine containing fragments of copolymers of N-vinyl pyrrolidone with vinyl alcohol. Reports of the National Academy of Science of Ukraine, 2014, no. 9: 92–96. doi:10.15407/dopovidi2014.09.092.

11. Rozhnova R., Karpenko O., Rudenchyk T., Galatenko N., Kiselova T. Synthesis film materials with decametoxine on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol. Naukovi zapysky NaUKMa, 2016, 183: 54–59. http://ekmair.ukma.edu.ua/handle/123456789/9389, in Ukrainian.

12. Stashenko K. V., Rudenchyk T. V., Rozhnova R. A., Galatenko N. A., Narazhaiko L. F. Biocompatible composites with lysozyme based on. Polyurethane urea with N-vinyl pyrrolidone copolymer fragments, vinyl acetate and vinyl alcohol. Visn. Odes. nac. univ., Chem. 2018, 23, no. 2: 46–56. https://doi.org/10.18524/2304-0947.2018.2(66).132042, in Ukrainian. https://doi.org/10.18524/2304-0947.2018.2(66).132042.

13. Vislohuzova T.V., Kuliesh D.V., Rozhnova R.A., Halatenko N.A., Narazhaiko L.F. Vyvchennia biosumisnosti kompozytsiinykh materialiv napovnenykh sriblovmisnymy kremnezemnymy nanokompozytamy dlia medytsyny. Visnyk problem biolohii i medytsyny. 2022, 164 (додаток), 2: 12–13. doi:10.29254/2077-4214-2022-2-164/addition-12-13, in Ukranian. https://doi.org/10.29254/2077-4214-2022-2-164/addition-12-13.

14. Bogatyrov V.M., Gun’ko V.M., Galaburda M.V., Oranska O.I., Petryk I.S., Tsyganenko K.S., et al. The effect of photoactivated transformations of Ag+ and Ag0 in silica fillers on their biocidal activity. Research on Chemical Intermediates. 2019, 45, no. 8: 3985–4001. https://doi. org/10.1007/s11164-019-03885-2.

15.Vislohuzova T.V., Rozhnova R.A., Bogatyrov V.M. Film materials filled with biocidal silver-containing silica nanocomposites. Abstract of Ukrainian Conference with International Participation Chemistry, physics and technology of surface; 2020 Oct 21-23; Kyiv; 2020: 190.

16. Vislohuzova T., Rozhnova R., Galatenko N., Narazhayko L, Rudenko A. Study of biodegradation, biocompatibility and bactericidal activity of film materials with tiamulin fumarate based on polyurethane urea. Chemistry & Chemical Technology, 2020, 14, no: 3: 318–326. doi.org/10.23939/chcht14.03.318

17. Zi Wang, Zhongyu Hou, Yanfang Wang. Fluorinated waterborne shape memory polyurethane urea for potential medical implant application. Journal of Applied Polymer Science, 2013, 127, no. 1: 710–716. https://doi.org/10.1002/app.37862.

18. Razumovskyi L.P., Razumova L.L., Veretennykova A.A., Pestova M.B., Yordanskyi A.L.

Domain structure of segmented polyurethane brand Vitur T-0533. Polymer Science, 1991, Series A, 33, no. 3: 632)–637. https://doi.org/10.1016/0032-3950(91)90258-R.

19. Shundrina I.K., Oleinik I.V., Pastukhov V.I., Shundrin L.A., Chernonosova V.S., Laktionov P.P. Synthesis of urethane-type polymers with polydimethylsiloxane blocks for the manufacture of fibrous matrices by electrospinning. Polymer Science, 2020, Series B, 62, no. 4: 385–393. https://doi.org/10.1134/S1560090420040090.

20. Cheng Y., Yu S., Zhen X., Wang X., Wu W., Jiang X. Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces. 2012, 4, no. 10: 5325–32. doi: 10.1021/am3012627.

21. Sahu S.K., Mallick S.K., Santra S., Maiti T.K., Ghosh S.K., Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J. Mater Sci Mater Med. 2010, 21, no. 5: 1587–1597. doi: 10.1007/s10856-010-3998-4.