https://doi.org/10.15407/polymerj.45.03.204

THERMAL AND ELECTROPHYSICAL PROPERTIES OF PCTFE-TEG AND PCTFE-TEG/SiO2 NANOCOMPOSITES

Taras Sichkar,
Dragomanov Ukrainian State University, 9 Pyrohova str., Kyiv, 01601, Ukraine,
ORCID: 0000-0001-8885-0170
Maksym Rokytskyi,
Dragomanov Ukrainian State University, 9 Pyrohova str., Kyiv, 01601, Ukraine,
ORCID: 0000-0002-1057-5057
Valery Demchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0001-9146-8984
Andrii Shut,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy prosp., Kyiv, 03056, Ukraine,
ORCID: 0000-0003-1969-1035
Polym. J., 2023, 45, no. 3: 204-213.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Methods for dispersing of the thermally expanded graphite (TEG) in a dilute alcohol medium and for modifying the surface of a TEG with an ultradisperse dielectric – silicon dioxide (SiO2) are proposed. The new polymer nanocomposites (PNC) obtained based on polychlortrifluoroethylene (PCTFE) with a low content of dispersed TEG and a modified filler TEG/SiO2 are characterized by high rates of electrophysical properties. Using electron microscopy and X-ray photoelectron spectroscopy, the features of the electronic structure of the surface of composites are investigated. Using the two-contact method in the kilohertz frequency range, the features of change in the electrophysical properties of composites depending on the content of fillers and temperature have been established. Based on research and comparative analysis of thermophysical properties (specific heat capacity cp, temperature coefficient of linear expansion α) of the systems, the influence of the structural-morphological state of the components and their concentration, the level of interfacial interaction on the physical properties of nanocomposites was investigated. 

The fact of the appearance of interfacial polarization in the PCTFE-TEG/SiO2 interfacial layers due to the appearance of the TEG/SiO2 and PCTFE-SiO2 interphase layers is established, which, while preserving the complex of properties inherent to the polymer materials, increases the overall electrical conductivity of the composites. It was also established that the modified nanofiller exhibits greater activity in relation to the polymer matrix than the unmodified one. It is shown that the composites exhibit a dual effect of the modified nanofiller on the matrix structure, which manifests in the formation of a powerful crystalline structure in the zones of influence of the nanofiller and amorphization of the polymer matrix in the peripheral zones. It was found that the result of amorphization of the matrix is a decrease in the area of the peaks of temperature reflexes on the temperature dependences of the specific heat capacity and an increase in the absolute value of the temperature coefficient of linear expansion with an increase in the concentration of modified TEG.

Key words: polychlortrifluoroethylene, thermally expanded graphite, silicon dioxide, electrical conductivity, heat capacity, linear expansion.

References

1. Semko L.S., Chernysh I.G., Vovchenko L.L. Elektrofizicheskie svojstva kompozicionnyh materialov na osnove polietilena i termorasshirennogo grafitaю. Plasticheskie massy, 1991, 8: 20–23.
2. Semko L.S., Chernysh I.G., Revo S.L., Dashevskij N.N. Mehanicheskie svojstva kompozicionnyh materialov na osnove polietilena i termorasshirennogo grafita. Mehanika kompozitnyh materialov, 1992, 3: 307–314.
3. Semko L.S., Chernysh I.G., Svincickij N.I. Dinamicheskie mehanicheskie svojstva kompozicionnyh materialov na osnove polietilena i termorasshirennogo grafita. Problemy prochnosti, 1994, 7: 84–91.
4. Semko L.S., Popov P.E., Kocherov V.L. Badanie wlaśeiwoci kompozytów z polipropylenu i grafitu termorozszerzalnego. Polimery, 1997, 42, 4: 244–250. https://doi.org/10.14314/polimery.1997.244.
5. Semko L.S., Kruchek Ya.I., Gorbik P.P. Suchasni pidhodi do stvorennya makrostrukturi polimernih kompozicijnih sistem. Himichna promislovist Ukrayini, 1997, 4: S.46–50.
6. Semko L.S., Kruchek Ya.I., Shevlyakov Yu.A., Gorbik P.P., Oranskaya E.I. Vliyanie dioksida titana na elektrosoprotivlenie i sensornye svojstva kompozicionnyh materialov i termorasshirennogo grafita. Neorganicheskie materialy, 2007, 43, 4: 420–426. https://doi.org/10.1134/S002016850704005X.
7. Semko L.S., Kruchek Ya.I., Shevliakov Yu.A., Dziubenko L.S., Horbyk P.P., Chuiko O.O. Vzaiemozviazok mizh strukturoiu, elektrofizychnymy i sensornymy vlastyvostiamy kompozytsiinykh materialiv na osnovi polivinilkhlorydu ta termorozshyrenoho hrafitu. Fizyka i khimiia tverdoho tila, 2005, 6, 4: 685–691.
8. Semko L.S., Shevliakov Yu.A., Kruchek Ya.I., Chuiko O.O., Horbyk P.P. Vplyv hazopodibnykh spoluk na elektrychni vlastyvosti vuhlets-napovnenykh polimernykh kompozytsiinykh materialiv. Dopovidi NAN Ukrainy, 2004, 6: 100–106.
9. Briggs D., Seah M.P. Practical surface eanalysis by Auger and X-ray photoelectron spectroscopy. Chichester: John Wiley and Sons Ltd, 1983: 533.
10. Shut N.I., Sichkar T.G., Rokickij M.A., Mahno S.N., Mazurenko R.V., Korduban A.M., Rokickaya G.V., Shut A.N. Elektrofizicheskie svojstva kompozitov sistem polihlortriftoretilen – dispergirovannyj i modificirovannyj grafit. Vesci BDPU. Seryya 3. Fizika. Matematyka. Infarmatyka. Biyalogiya. Geagrafiya, 2020, 104, 2: 11–18.
11. Chmutin I.A., Ryvkina N.G., Soloveva A.B., Kedrina N.F. Osobennosti elektricheskih svojstv kompozitov s shungitovym napolnitelem. Vysokomolekulyarnye soedineniya, 2004, 46, 6: 1061–1070.
12. Makhno S.M. Elektrofizychni vlastyvosti system polimer – ionnyi providnyk u nadvysokochastotnomu diapazoni. Himiya, fizika i tehnologiya poverhnosti, 2008, 14: 115–121.
13. Mudrak I.M., Kotenok O.V., Rokytskyi M.O., Levandovskyi V.V., Mishchenko V.M., Makhno S.M., Horbyk P.P. Elektrofizychni vlastyvosti systemy pentaplast/iodyd sribla. Fizyka i khimiia tverdoho tila, 2010, 11, 1: 166–169.
14. Rokitsky M.A., Gorbyk P.P., Levandovsky V.V., Makhno S.M., Kondratenko O.V., Shut N.I. Electrophysical properties of polymer composites penton – silver iodide system in 8 – 12 GHz frequency region. Functional Materials, 2007, 14, 1: 125–129.
15. Uvarov N. F. Boldyrev V.V. Razmernye effekty v himii geterogennyh sistem. Uspehi himii, 2001, 70, 4: 307–328. https://doi.org/10.1070/RC2001v070n04ABEH000638.
16. Muradyan V.E., Sokolov E.A., Babenko S.D., Moravskij A.P. Dielektricheskie svojstva kompozitov, modificirovannyh uglerodnymi nanostrukturami, v mikrovolnovom diapazone. Zhurnal tehnicheskoj fiziki, 2010, 80, 2: 83–87.
17. Sichkar T.H., Rokytskyi M.O., Yanchevskyi L.K., Rokytska H.V., Ursul K.V., Shut M.I. Fizyko-mekhanichni ta relaksatsiini vlastyvosti systemy PKhTFE – nanodyspersnyi hrafit. Fizyka aerodyspersnykh system, 2020, 58: 15–25. http://dx.doi.org/10.18524/0367-1631.2020.58.206183.
18. Sichkar T.H., Rokytskyi M.O., Yanchevskyi L.K., Rokytska H.V., Ursul K.V., Shut M.I. Teplofizychni vlastyvosti polimernykh kompozytiv na osnovi napovnenoho termorozshyrenym hrafitom polikhlortryftoretylenu. Fizyka aerodyspersnykh system, 2022, 60: 31–39. https://doi.org/10.18524/0367-1631.2022.60.265987.
19. Rokytskyi M.O., Shut M.I., Sichkar T.G., Rokytska H.V., Shut A.M., Ursul K.V. Heat properties of PCTFE – TEG and PHTFE – TEG/SiO2 nanocomposites, The International research and practice conference: “Nanotechnology and nanomaterials (NANO-2022)”: abstracts, Lviv, 25–27 August, 2022: 211.
20. James E.M. Polymer Data Handbook. New York: Oxford University Press, 1999: 1264.
21. Panshin Yu.A, Malkevich S.G, Dunaevskaya Cz.S. Ftoroplasty. Leningrad: Khimiya, 1978: 231.
22. Sichkar T.H., Rokytskyi M.O., Yanchevskyi L.K., Rokytska H.V., Ursul K.V., Shut M.I. Vplyv modyfikatsii na fizyko-mekhanichni ta relaksatsiini vlastyvosti systemy polimer – nanodyspersnyi hrafit. Fizyka aerodyspersnykh system, 2021, 59: 17–25. https://doi.org/10.18524/0367-1631.2021.59.227104.