https://doi.org/10.15407/polymerj.45.02.097

RHEOLOGICAL PROPERTIES OF OLIGOISOPRENE LIQUIDS. PRESENTATION IN THE FRAMEWORK OF THE ANGELL’s CONCEPT

V.F. SHUMSKY,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
e-mail: vfshumskiy26@gmail.com
ORCID: 0000-0003-4458-7256

I.P. GETMANCHUK,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-6924-1430
V.P. BOIKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
e-mail: boikovita@bigmir.net
ORCID: 0000-0002-0157-6664

V.K. GRISHCHENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
e-mail: oligomer8@gmail.com
ORCID: 0000-0002-4951-936X

Polym. J., 2023, 45, no. 2: 97-103.

Section: Structure and properties.

Language: English.

Abstract:

The work is devoted to the study of self-organization processes in disperse systems. The most relevant aspect of such self-organization is the relationship between structure and properties in polymer composites. In this paper, we are talking about dispersion media (matrices), namely, the mechanisms of phenomena and interactions that occur during the deformation of disperse systems. These interactions depend on the properties and processes of self-organization of dispersion media and determine the properties of future polymer composites. One of the most popular dispersion media are diene oligomers (liquid rubbers). In this work, the rheology of diene oligomers with terminal hydroxyl groups (HRD) was studied in a wide range of shear rates and temperatures. It was assumed that in the case of oligoisoprene, an increase in the activation energy of viscous flow (from 46 to 95 kJ/mol) with decreasing temperature is associated with an increase in the density of the fluctuation dynamic structure with an increase in the volume content of associates of polar OH groups (i.e., nonionic micelles) with a decrease in thermal energy kT (k is the Boltzmann constant). The results of rheological studies for the first time (for non-ionic liquids) were presented within the framework of the Angell’s concept, from which it followed that these systems are fragile, i.e. they are very promising in terms of studying structure formation in a shear field.

Key words: rheology, viscosity, shear deformation, activation energy, fragility, fragile liquids.

References

1. Derkach S.R. Reologiya emulsiyi. Ocherki po kolloidnoyi himii. SPb.: Nauka, 2012.
2. Shumskiy V.F., Kosyanchuk L.F., Davidenko V.V., Getmanchuk I.P., Antonenko O.I., Syirovets A.P. Reologicheskaya harakteristika dispersii gidrofobizovannogo aerosila v uglevodorodnoy srede. Reopeksiua I porog perkolyatsii. Polim. Zhurn., 2018, 40, no. 1:23–30. https://doi.org/10.15407/polymerj.40.01.023.
3. Malkin A.Ya., Semakov A.V., Kulichihin V.G. Strukturoobrazovanie `pri techeneii polimernyih i kolloidnyih system. Vyisokomolek. soed., 2010, 52, no. 11: 1879–1902. https://doi.org/10.1134/S0965545X10110039.
4. Malkin A.Ya., Kulichihin V.G. Dilatansiya i dinamicheskoe steklovanie kontsentrirovannih suspenziy: sostoyanie problemi. Kolloid. zhurn., 2016, 78, no.1: 3–10.
5. Rusanov A.I. Mitselloobrazovanie v rastvorah poverhnostno-aktivnyih veschestv, SPb: Himiya, 1992.
6. RusanovA.I. Udivitelnyiy mir mitsell. Kolloid. zhurn., 2014, 76, no. 2: 139–144.
7. Miller A.A. Some molecular properties of vinyl polymers. Macromolecules, 1969, 2, no. 4: 355–358. https://doi.org/10.1021/ma60010a007.
8. Schreiner Ch., Zugmann S., Hartl R., Gores H. J. Temperature dependence of viscosity and specific conductivity of fluoroborate-based ionic liquids in light of the fractional Walden rule and Angell’s fragility concept. J. Chem. Eng. Data, 2010, 55, 4372 –4377. https://doi.org/10.1021/je1005505.
9. Fulcher G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 1925, 8, 339–355. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x.
10. Vogel H. The temperature dependence law of the viscosity of fluids. Phys. Z., 1921, 22, 645–646.
11. Berry G.C., Fox T G. The viscosity of polymers and their concentrated solutions. Adv. Polym. Sci., 1968, 5, no. 3: 261–357. https://doi.org/10.1007/BFb0050985.
12. Miller A.A. Some molecular properties of vinyl polymers. Macromol., 1969, 2, no.4: 355–358. https://doi.org/10.1021/ma60010a007.
13. Vinogradov G. V., Malkin A.Ya. Rheology of polymers. Khimiya, Moscow. 1980, 440. https://doi.org/10.1007/978-3-642-52204-8.
14. Angell C. A. Relaxation in liquid, polymers and plastic crystals – strong/ fragile patterns and problems. Journal of Non-Crystalline Solids, 1991, 131–133, 13–31. https://doi.org/10.1016/0022-3093(91)90266-9.
15. Tammann G. Der Glaszustand / Leipzig: L.Voss Verlag. 1933.
16. Schreiner C., Zugmann S., Hartl R., Gores H. J. Temperature Dependence of Viscosity and Specific Conductivity of Fluoroborate-Based Ionic Liquids in Light of the Fractional Walden Rule and Angell’s Fragility Concept. J. Chem. Eng. Data, 2010, 55, 4372–4377. https://doi.org/10.1021/je1005505.
17. Angell C. A. Formation of Glasses from Liquids and Biopolymers. Science, 1995, 267, 1924–1935. https://doi.org/10.1126/science.267.5206.1924.
18. Hodge I. M. Strong and fragile liquids – a brief critique. J. Non-Cryst Solids, 1991, 202,
164–172. https://doi.org/10.1016/0022-3093(96)00151-2.
19. Vilgis T. A. Strong and fragile glasses – A powerful classification and its consequences. Phys. Rev. B., 1993, 47, 2882–2885. https://doi.org/10.1103/PhysRevB.47.2882.