https://doi.org/10.15407/polymerj.45.03.181

SYNTACTIC FOAMS AS COMPOSITE MATERIALS FOR HIGH-TECH INDUSTRIES

К.G. Gusakova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: polymernano@ukr.net
ORCID: 0000-0002-0827-7042
V.V. Trachevskyi,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: meches49@ukr.net
ORCID: 0000-0002-3916-9116
D.М. Shulzhenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: shulzhenko_d@nas.gov.ua
ORCID: 0000-0002-5406-5235
D. Grande,
Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS – Université Paris-Est Créteil Val-de-Marne, 2, rue Henri Dunant, 94320 Thiais, France,
e-mail: grande@icmpe.cnrs.fr
ORCID: 0000-0002-9987-9961
О.М. Fainleib,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: fainleib@i.ua
ORCID: 0000-0001-8658-4219

Polym. J., 2023, 45, no. 3: 181-194.

Section: Review.

Language: Ukrainian.

Abstract:

The present review introduces the analysis and gathering modern ideas about the novel polymer composites, namely polymer syntactic foams, known as extremely widely used multifunctional materials with unique properties that meet the requirements of advanced high-tech industries. The main classifications, methods of synthesis and characteristization of various types of polymer foams were summarized. Special attention has been paid to structural features and properties of polymer syntactic foams. The main types of polymer matrices and fillers used for synthesis of thermosetting syntactic foams were characterized in details. The influence of initial composition and fabrication techniques applied on morphology, physical-chemical properties and application of composite materials comprising polymer syntactic foams in high-tech industries such as marine and underwater, aerospace, defense and transport has been also established. The review also highlights the analysis of world markets, trends and forecasting the further development of syntactic foams, especially high-performanced ones, disclosing their advantages and disadvantages. Presumable ways of modification of the existing types of polymer syntactic foams as well as perspectiveness of further progress in this research area to obtain the improved high-performance materials are also outlined.

Key words: polymer foams, syntactic foams, thermosets, hollow glass microspheres, fly ash, aluminosilicate microspheres.

REFERENCES

1. Dzhura Ye.О. Polimerni kompozytsiyni materialy v raketno-kosmichniy technitsi. Kyiv: Vyscha osvita, 2003: 399.
2. Zhang X., Ya B., Huang B., Zhou B., Pei L., Jia F. Study on preparation and properties of carbon nanotubes/hollow glass microspheres/epoxy syntactic foam. J. Polym. Eng., 2017, 37, no. 1: 93–98. https://doi.org/10.1515/polyeng-2016-0001.
3. Li H., Wang N., Han X., Fan B.; Feng Z.; Guo S. Simulation of thermal behavior of glass fiber/phenolic composites exposed to heat flux on one side. Materials, 2020, 13, no. 2: 421. https://doi.org/10.3390/ma13020421.
4. Syntactic foam market [Elektronniy resurs]. Rezhim dostupu: https://www.marketsandmarkets.com/Market-Reports/syntactic-foam-market-49852579.html?gclid=CjwKCAiA0JKfBhBIEiwAPhZXD_F12ILSMMdRC2QUaA0BCEyGd4PmrUNW53mB1x3UOB4W-2y0Pu6KnhoC00cQAvD_BwE#, 2023.
5. Kiva D.S. Etapy stanovleniya i nachala razvyornutoho primeneniya polimernyh kompozitsionnykh materialov v konstruktsiyakh passazhirskikh i transportnykh samolyotov (1970–1995 gg) Aviatsionno-kosmicheskaya tekhnika i tekhnolohiya, 2014, 6: 5–16. Rezhim dostupu: http://nbuv.gov.ua/UJRN/aktit_2014_6_3.
6. Sankaran S., Ravishankar B., Sekhar K., Dasgupta, S., Jagdish Kumar M.N. Syntactic foams for multifunctional applications. In book: Composite Materials. K. Kar (Ed.), Berlin: Springer, 2007:282–310. ISBN 978-3-662-49512-4. https://doi.org/10.1007/978-3-662-49514-8_9.
7. Fainleib А., Purikova О., Grigoryeva О., Bardash L., Bismark A. О sovremennoy klassifikaciyi i sposobah polucheniya polimernyh pen. Polimerizovannye vysokokoncentrirovannye emulsii. Polimernyi zhurnal, 2012, 34, no. 4: 315–328.
8. Pat 3558532 USA. IC7 C08J9/0095 Method for making ethylene polymer foams. D. J. Sundquist, N. W. Howell. Publ. 26.01.1971.
9. Knotek V., Ďurovič M., Kučerová I. The effect of synthetic polymer foams on cellulosic material degradation. Materials, 2023, 16: 1210. https://doi.org/10.3390/ma16031210.
10. Klempner D., Sendijarevic V. Polimeric foams and foam technology / 2nd edition. Hanser Verlag Munich, 2004: 603. ISBN 978-1569903360.
11. Rätzsch M., Bucka H., Panzer U. Polypropylene foams. In book: Polypropylene. Polymer Science and Technology/ J. Karger-Kocsis (Ed), Dordrecht: Springer, 1999: 635–642. ISBN 978-94-010-5899-5. https://doi.org/10.1007/978-94-011-4421-6_86.
12. De Sousa Pais M., Velasco J.I. Foamed polypropylene for industrial applications. In book: Polypropylene: synthesis, applications and environmental concerns/ Ed.: Nova Science Publishers: New York, USA, 2013: 285–319. ISBN978-1-62417-142-0.
13. Schüler F., Schamel D., Salonen A., Drenckhan W., Gilchrist M.D., Stubenrauch C. Synthesis of macroporous polystyrene by the polymerization of foamed emulsions Angew. Chem. Ed., 2012, 51, no. 9: 2213–2217. https://doi.org/10.1002/anie.201107806.
14. Pat WO №2006077395A1 IC7 C08J9/122 Polyamide foams, process to make them and applications thereof. P. Jacobs, N. Witten. Publ. 27.07.2006.
15. Handbook of thermoset plastics (3rd Ed) / Ed Hanna Dodiuk. Sidney H. Goodman, Elsevier, 2014: 768. ISBN: 9781455731077. https://doi.org/10.1016/C2011-0-09694-1. https://doi.org/10.1016/C2011-0-09694-1.
16. Afolabi L.O., Ariff Z.M., Hashim S.F.S., Alomayri T., Mahzana S., Kamarudin K.-A., Muhammad I.D. Syntactic foams formulations, production techniques, and industry applications: a review. J. Mater. Res. Technol., 2020; 9, no. 5:10698–10718. https://doi.org/10.1016/j.jmrt.2020.07.074.
17. Salleh Z. Characterization of syntactic foams for marine applications: diss. doctor of philosophy. / University of Southern Queensland, Toowoomba, 2017: 230.
18. Structural health monitoring of aerospace composites/ Ed V.Giurgiutiu, Elsevier, 2015: 457. ISBN978-0-12-409605-9. https://doi.org/10.1016/C2012-0-07213-4.
19. Belarbi A., Dawood M., Acun B. Sustainability of fiber-reinforced polymers (FRPs) as a construction material, Chapter 20. In book: Sustainability of construction materials (2nd Ed) J. M. Khatib (Ed.) Woodhead Publishing Series in Civil and Structural Engineering, Elsevier, 2016: 521–538. ISBN: 9780081009956. https://doi.org/10.1016/B978-0-08-100370-1.00020-2.
20. Berlin А.А., Shutov F.А. Chimiya i tekhnologiya hazonapolnennykh vysokopolimerov. Moskva: Nauka, 1980: 540.
21. Kompaniya «Alta-Profil Ukraina» [Elektronniy resurs]. Rezhim dostupu: https://alta-profil.ua/poleznoe/energy/penoplast-kak-uteplitel/.
22. Kompaniya «Pelican Products Inc.» [Elektronniy resurs]. Rezhim dostupu: https://pelishop.com.ua/1731-komplekt-zapasnyh-prokladok-iz-vspenennogo-materiala-5-sht.
23. Skilky sokhne montazhna pina – vid choho zalezhyt zastyhannia. [Elektronniy resurs]. Rezhim dostupu: https://jak.koshachek.com/articles/skilki-sohne-montazhna-pina-vid-chogo-zalezhit.html.
24. Hollow glass microspheres for plastics, elastomers, and adhesives compounds / B. Yalcin, S.E. Amos (Ed.). – Oxford: Elsevier, 2015: 234. ISBN 978145572.
25. Koopman M., Chawla K.K., Carlisle K.B., Gladysz G.M. Microstructural failure modes in three-phase glass syntactic foams. J. Mater. Sci., 2006, 41: 4009–4014. https://doi.org/10.1007/s10853-006-7601-9.
26. Gladysz G., Perry B., Mceachen G., Lula J. Three-phase syntactic fоams: structure-property relationships. J. Mater. Sci., 2006, 41: 4085–4092. https://doi.org/10.1007/s10853-006-7646-9.
27. Wouterson E., Boey F.Y.C., Hu X., Wong S-C. Specific properties and fracture toughness of syntactic foam: effect of foam microstructures. Compos. Sci. Tech., 2005, 65, no. 11: 1840–1850. https://doi.org/10.1016/j.compscitech.2005.03.012.
28. Yung K.C., Zhu B.L., Yue T.M., Xie C.S. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol., 2009, 69: 260–264. https://doi.org/10.1016/j.compscitech.2008.10.014.
29. Difference Between FCC and HCP. [Elektronniy resurs]. Rezhim dostupu: https://www.differencebetween.com/difference-between-fcc-and-hcp/.
30. Shutov F.A. Syntactic polymer foams. Chromatography/Foams/Copolymers. Advances in Polymer Science, 1986, 73/74: 63–123. https://doi.org/10.1007/3-540-15786-7_7.
31. Berlin A.A., Shutov F.A. Uprochnennyie hazonapolnennyie plastmassy. Khimiia, 1980: 222.
32. Cospheric LLC. [Elektronniy resurs]. Rezhim dostupu: https://microspheres.us/materials-for-microspheres/.
33. Duraikkannu S. L., Castro-Muñoz R., Figoli A. A review on phase-inversion technique-based polymer microsphere fabrication. Colloid Interface Sci. Commun., 2021, 40: 100329. https://doi.org/10.1016/j.colcom.2020.100329.
34. Pinkl S., Herwijnen H. W. G., Veigel S., Gindl-Altmutter W., Riegler M. Urea-formaldehyde microspheres as a potential additive to wood adhesive. J. Wood Sci., 2018, 64: 390–397. https://doi.org/10.1007/s10086-018-1717-9.
35. Kompaniya «SGL Carbon». [Elektronniy resurs]. Rezhim dostupu: https://www.sglcarbon.com/en/markets-solutions/material/sigratherm-graphitized-microballoons/.
36. Deng B., Mao X., Xiao W., Wang D. Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2 J. Mater. Chem. A, 2017, 5: 12822–12827. https://doi.org/10.1039/C7TA03606J.
37. Zhengzhou hollowlite materials co., ltd. [Elektronniy resurs]. Rezhim dostupu: https://en.hollowlite.com/products/Hollow-Glass-Sphere.html, 2022.
38. Kompaniya «Global Market Insights» [Elektronniy resurs]. Rezhim dostupu: https://www.asdreports.com/market-research-report-603958/hollow-glass-microspheres-market-size, Hollow Glass Microspheres Market Size, 2020.
39. Myroniuk І.F., Tatarchuk Т.R., Vasylieva H.V., Yaremiy І.P., Mykytyn І.М. Morfologiia, fazovyi sklad ta radiolohichni vlastyvosti zoly vynosu Burschtynskoi teplovoi elektrostantsii. Fizyka і chimiia tverdoho tila, 2018, 19, no. 2: 171–178. Rezhim dostupu: http://hdl.handle.net/123456789/593. https://doi.org/10.15330/pcss.19.2.171-178.
40. Kompaniya «Geocon Products» [Elektronniy resurs]. Rezhim dostupu: https://www.indiamart.com/proddetail/hollow-glass-microspheres-k-15-12723014448.html .
41. Kompaniya «Bariteworld» [Elektronniy resurs]. Rezhim dostupu: https://bariteworld.com/industrial-minerals-products/cenospheres/.
42. Mamunya E. P., Davidenko V. V., Lebedev E. V., Budakova F. H., Donskoy A. A. Mekhanicheskiye svoystva vysokonapolnennykh sintaktnykh kompozitsiy, soderzhashchikh napolnitel’, aktivirovannyy v vysokochastotnom razryade. Kompozitsionnyye polimernyye materialy, 1988, 36: 26–29. https://doi.org/10.3406/igram.1988.2066.
43. Arslan G., Gunduz M. O. B., Zhang X. L., Ersoz M. Surface modifcation of glass beads with aminosilane monolayer. Turk. J. Chem., 2006, 30, no. 2: 203–210. Available at: https://journals.tubitak.gov.tr/chem/vol30/iss2/8.
44. Mutua F. N., Lin P., Koech J. K., Wang Y. Surface modification of hollow glass microspheres. Materials Sciences and Applications, 2012, 3, no. 12: 856–860. https://doi.org/10.4236/msa.2012.312125.
45. Kutelova Z., Mainka H., Mader K., Hintz W., Tomas J. Glass spheres: functionalization, surface modification and mechanical properties. Surface Effects in Solid Mechanics. Advanced Structured Materials, 2013; 30: 95–104. https://doi.org/10.1007/978-3-642-35783-1_8.
46. Ashton-Patton M.M., Hall M.M., Shelby J.E. Fomation of low density polyethylene/hollow glass microspheres composites. J. Non-Cryst. Solids, 2006, 352, no. 6-7: 615–619. https://doi.org/10.1016/j.jnoncrysol.2005.11.058.
47. Patankar S.N., Kranov Y.A. Hollow glass microsphere HDPE composites for low energy sustainability. Mater. Sci. Eng., A, 2010, 527, no. 6: 1361–1366. http:// doi.org/10.1016/j.msea.2009.10.019.
48. Gupta N., Zeltmann S.E., Shunmugasamy V.C., Pinisetty D.. Applications of polymer matrix syntactic foams. JOM, 2014, 66, no. 2: 245–254. https://doi.org/10.1007/s11837-013-0796-8.
49. Calahorra A, Gara O, Kenig S. Thin film parylene coating of three-phase syntactic foams. J Cell Plast., 1987, 23, no. 4:383–398. https://doi.org/10.1177/0021955X8702300402.
50. John B, Nair C. P. R, Ninan K. N. Low-density phenolic syntactic foams: processing and properties. Cell Polym., 2007; 26, no. 4:229–244. https://doi.org/10.1177/026248930702600401.
51. Okuno K, Woodhams R. T. Mechanical properties and characterization of phenolic resin syntactic foams. J Cell Plast., 1974, 10, no. 5: 237–244. https://doi.org/10.1177/0021955X7401000506.
52. Sankaran S, Ravishankar B.N., Ravisekhar K., Kumar M.N.J In: Proceedings of ISAMPE national conference on composites, INCOM-4. Amrita Vishwa Vidyapeetham, Coimbatore, India, Dec.2005.
53. John B., Nair C. P. R., Devi K. A., Ninan K. N. Effect of low-density filler on mechanical properties of syntactic foams of cyanate ester. J. Mater. Sci., 2007, 42:5398–5405. https://doi.org/10.1007/s10853-006-0778-0.
54. John B., Nair C. P. R., Ninan K.N. Tensile and flexural properties of glass-fibre-reinforced cyanate ester syntactic foams. Polym. Polym. Compos., 2008, 16, no. 7: 431–438. https://doi.org/10.1177/096739110801600704.
55. John B., Nair C. P. R., Mathew D., Ninan K. N. Foam sandwich composites with cyanate ester based syntactic foam as core and carbon-cyanate ester as skin: Processing and properties. J. Appl. Polym. Sci., 2008, 110: 1366–1374. https://doi.org/10.1002/app.28658.
56. Wang J., Liang G., He S., Yang L. Curing behavior and mechanical properties of hollow glass microsphere/bisphenol A dicyanate ester composites. J. Appl. Polym. Sci., 2010, 118, no. 3: 1252–1256. https://doi.org/10.1002/app.32446.
57. John B., Naira C.P.R., Ninan K.N. Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams. Mater. Sci. Eng., A, 2010, 527: 5435–5443. https://doi.org/10.1016/j.msea.2010.05.016.
58. Afolabi O., Ariff Z.M., Hashim S.F.S., Alomayri T., Mahzan S., Kamarudin K.-A., Muhammad I.D. Syntactic foams formulations, production techniques, and industry applications: a review. J. Mater. Res. Technol., 2020, 9, no. 5: 10698–10718. https://doi.org/10.1016/j.jmrt.2020.07.074.
59. Guzman M. E., Rodriguez A. J., Minaie B., Violette M. Processing and properties of syntactic foams reinforced with carbon nanotubes. J. Appl. Polym. Sci, 2012, 124: 2383–2394. https://doi.org/10.1002/app.35283.
60. Pat 8288454B2 USA IC7 C08K7/26. Polymeric compositions containing microspheres. T.M. Keller, M. Laskoski, . M.K. Kolel-Veetil. Publ.16.10.2012.
61. Yuan L., Huang S., Gu A., Liang G., Chen F., Hub Y., Nutt S. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos. Sci. Technol. , 2013, 87, 111–117. https://doi.org/10.1016/j.compscitech.2013.08.005.