Полімерний журнал, 2022, Т.44, №2

fajnlejb1.pdf

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: fainleib@i.ua

ORCID: 0000-0001-8658-4219

Polym. J., 2022, 44, no. 2: 93-100.

Section: Review.

Language: English.

https://doi.org/10.15407/polymerj.44.02.093 

Abstract:

This article is devoted to a review of the literature on a very promising direction in the chemistry of macromolecular compounds: the synthesis and study of polymers, more specifically, high performance polycyanurates based on bis(poly)phenols) of natural origin. Cyanate Ester Resins (CER) are characterized by a very regular structure of the polymer networks, namely polycyanurates (PCNs), obtained by their polycyclotrimerization. They have received much attention because of their unique combination of physical properties, including high thermal stability (> 400  °C), high glass transition temperature (> 270 °C), high fire-, radiation and chemical resistance, low water absorption and low outgassing, high adhesion to different substrates and excellent dielectric properties (ε=2,64−3,11). As a result, CER are currently used as structural or functional materials in aeronautics, space (composite strakes, fins, nose radomes, heat shields), printed circuit boards, adhesives etc. It has to be noted here that CER thermosetting resins, expanding the high-temperature operations regimes, are produced from synthetic petroleum-derived bisphenols, such as bisphenol A, which are toxic and dangerous for environment. In the past decade, naturally occurring phenolic derivatives have arisen as attractive precursors for developing new materials from renewable bio-sources for use in eco-friendly processes. Resins have been prepared utilizing either the whole liquid product or a phenolic-enriched fraction obtained after fractional condensation or further processing, such as solvent extraction or use of greener extraction methods. However, to date, none of the phenolic production and fractionation techniques has been utilized to allow for substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum-derived phenol. The variable nature of the percentage of phenolic compounds in terms of purity from different batches of crops from one season to another and geographical influence does not allow from the reproducibility of phenolic compounds, and hence the resulting polymers. However, the direction that needs to be explored should be oriented towards complete replacement of petro-based phenolics with bio-based ones in the face of an urgent petroleum crisis. In addition, there is a necessity for materials showing enhanced applicability and improved performance. It is a beginning of the era of such a step, which requires further exploration of natural phenolic sources aimed at their enhanced utilization.

Keywords: natural phenolic compounds, bio-based cyanate ester resins, thermostable polymer networks, polycyanurates.

REFERENCES

1. Shimp D.A., Christenson J.R., Ising S.J. In book: Proceedings of the 34th Annual International SAMPE Symposium, 1989: 222–223.

2. Chemistry and technology of cyanate ester resins / Ed Ian Hamerton. London: Chapman & Hall, 1994: 357. ISBN: 0‐7514‐0044‐0.

3. Hamerton I., Hay J.N. Recent technological developments in cyanate ester resins. High Performance Polymers, 1998, 10, no. 2: 163–174. https://doi.org/10.1088/0954-0083/10/2/001.

4. Nair C.P.R., Mathew D., Ninan K.N. Cyanate Ester Resins, Recent Developments. Advances in Polymer Science, 2001, 155, 1–99.

5. Thermostable polycyanurates. Synthesis, modification, structure and properties / Ed Alexander Fainleib. New York: Nova Science Publisher, 2010: 362. ISBN: 978-1-60876-907-0.

6. McConnell V.P. Resins for the Hot Zone, Part II: BMIs, CEs, benzoxazines and phthalonitriles. High Performance Composites, 2009, 17, no. 9: 49–54.

7. Fainleib A.M., Shantalii T.A., Pankratov V.A. Copolymers of cyanate esters and plastics based on them. Кompozitsionnye Polimernye Materialy, 1991, 49: 39–53.

8. Fainleib A.M., Sergeeva L.M., Shantalii T.A. Triazine-containing interpenetrating polymer networks. Кompozitsionnye Polimernye Materialy, 1991, 50: 63–72.

9. Fainleib A., Grigoryeva O., Pissis P. Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrating polymer networks, Chapter 3. In book: Focus on natural and synthetic polymer science / Ed Cornelia Vasile and G.E. Zaikov. New York: Nova Science Publishers, 2006, 49–84. ISBN: 1-60021-115-1.

10. Handique J.G., Baruah J.B. Polyphenolic compounds: an overview. Reactive & Functional Polymers, 2002, 52, no. 3: 163–188. https://doi.org/10.1016/S1381-5148(02)00091-3.

11. Yinrong Lu, L. Yeap Foo. Polyphenolics of Salvia—a review. Phytochemistry, 2002, 59, 117– 140. https://doi.org/10.1016/S0031-9422(01)00415-0.

12. Ronda J.C, Lligadas G., Galià M., Cádiz V. A renewable approach to thermosetting resins. Reactive & Functional Polymers, 2013, 73, no. 2: 381–395. https://doi.org/10.1016/j.reactfunctpolym.2012.03.015.

13. Bobade S.K., Paluvai N.R., Mohanty S., Nayak S.K. Bio-Based Thermosetting Resins for Future Generation: A Review, Polymer-Plastics Technology and Engineering, 2016, 55, no. 17: 1863–1896. https://doi.org/10.1080/03602559.2016.1185624.

14. Espinosa L.M., Meier M.A.R. Plant oils: The perfect renewable resource for polymer science?! European Polymer Journal, 2011, 47, no. 5: 837–852. https://doi.org/10.1016/j.eurpolymj.2010.11.020.

15. Meylemans H.A., Harvey B.G., Reams G.T., Guenthner A.J., Cambrea L.R., Groshens T.J., Baldwin L.C., Garrison M.D., Mabry J.M. Synthesis, Characterization, and Cure Chemistry of Renewable Bis(cyanate) Esters Derived from 2‑Methoxy-4-Methylphenol Biomacromolecules, 2013, 14: 771–780. https://doi.org/10.1021/bm3018438.

16. Meylemans, H.A., Groshens, T.J., Harvey, B.G. Synthesis of renewable bisphenols from creosol. ChemSusChem, 2011, 5, no. 1: 206–210. https://doi.org/10.1002/cssc.201100402.

17. Harvey B.G., Guenthner A.J., Lai W.W., Meylemans H.A., Davis M.C., Cambrea L.R., Reams G.T., Lamison K.R. Effects of o‑Methoxy Groups on the Properties and Thermal Stability of Renewable High-Temperature Cyanate Ester Resins. Macromolecules, 2015, 48, 3173−3179. https://doi.org/ 10.1021/acs.macromol.5b00496.

18. Davis M.C., Guenthner A.J., Groshens T.J., Reams J.T., Mabry J.M. Polycyanurate Networks from Anethole Dimers: Synthesis and Characterization. Journal of Polymer Science, Part A: Polymer Chemistry, 2012, 50, 4127–4136. https://doi.org/10.1002/pola.26218.

19. Cash J.J., Davis M.C., Ford M.D., Groshens T.J., Guenthner A.J., Harvey B.G., Lamison K.R., Mabry J.M., Meylemans H.A., Reams J.T., Sahagun C.M. High Tg thermosetting resins from resveratrol. Polymer Chemistry, 2013, 4: 3859–3865. https://doi.org/10.1039/c3py00438d.

20. Pat. 8853343 USA. IC7 C08G 63/02. Thermoset compositions from plant polyphenols. M.C. Davis, A.J. Guenthner, J.J. Cash, Publ. 07.10.2014.

21. Voirin C., Caillol S., Sadavarte N.V., Tawade B.V., Boutevin B., Wadgaonkar P.P. Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 2014, 5: 3142–3162. https://doi.org/10.1039/C3PY01194A.

22. Balachandran V.S., Jadhav S.R., Vemula P.K., John G. Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 2013, 42, no. 2: 427–438. https://doi.org/10.1039/C2CS35344J.

23. Mele G., Vasapollo G., Del Sole R. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis. Molecules, 2011, 16, no. 8: 6871–6882. https://doi.org/10.3390/molecules16086871.

24. Caillol S. Cardanol: A promising building block for biobased polymers and additives. Current opinion in green and sustainable chemistry, Elsevier, 2018, 14: 26–32. https://doi.org/10.1016/j.cogsc.2018.05.002.

25. Nair C.P.R., Bindu R.L., Joseph V.C. Journal of Polymer Science, Part A: Polymer Chemistry, 1995, 33: 621–627. https://doi.org/10.1002/pola.1995.080330403.

26. Arun D. Kulkarni, Bhausaheb V. Tawade and Prakash P. Wadgaonkar. Cyanate ester resins containing pentadecyl-substituted cyclohexyl moiety: Synthesis, curing and structure–property relationship. High Performance Polymers, 2012, 25, no. 3: 278–286. https://doi.org/10.1177/0954008312463738.


trachevskij2.pdf

2. V.V. Trachevskyi, O.M. Fainleib, MODIFICATION OF CEMENT-CONCRETE MIXTURES WITH POLYMER ADDITIVES, STRUCTURED CARBON NANOTUBES

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine, e-mail: meches49@ukr.net

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine, e-mail: fainleib@i.ua

Polym. J., 2022, 44, no. 2: 101-110.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.02.101


Abstract:

The use of complex modifiers for cement-concrete mixtures and concretes is becoming increasingly popular in modern materials science. The paper presents studies of the effect of a polymer additive structured with carbon nanomaterial on the physical and mechanical characteristics of cement-concrete mixtures. IR spectroscopy and thermogravimetry revealed that the use of carbon nanomaterial significantly changes the structure of cement-concrete mixtures. As a result of the fact that high-strength nanomaterial is the center of crystallization of cement stone formations, a denser reinforced microstructure is formed, which significantly increases the strength characteristics of cement-concrete mixtures. Inclusion in the composition of cement-concrete mixtures of polymer complex additives leads to higher and longer plasticization, which plays an important role in the production of monolithic products. It is established that in the presence of a complex modifier (polymer additive structured with carbon nanotubes) the crystal structure of calcium hydrosilicates is compacted, which causes high physical and mechanical characteristics of modified cement-concrete mixtures. It is experimentally shown that the additive acts as an accelerator of hardening and hardening of cement paste, as well as increases its strength characteristics. In general, for all cement-concrete mixtures in this study there is a water-reducing effect of the additive. Water consumption decreases by 5 wt. %, while the strength increases by 19%. Formulations of cement-concrete mixtures modified with polymer additives, structured carbon nanotubes, with high performance characteristics have been developed.

Keywords: cement, concrete, modification, polymer additives, carbon nanotubes.

REFERENCES

1. Kropyvnytska T.P. Alkaline-activated composite Portland cements with high early strength and nanomodified concretes on them. Dis. dock. Tech. Sciences, Lviv, 2020: 441.

2. Rudenko D.V. Properties of the phase components of the modified cement system. Teka. Commission of Motorization and Energetics in Agriculture, 2013, 13(4): 218–224.

3. Sanytsky M. Chemical processes causing dissolution of calcium cement minerals. Building materials and products, 2016, 4: 34–37.

4. Bolshakov V. I., Yelisieieva, М. O., Shcherbак, S. А. Contact strength of mechanoactivated fine concretes from granulated blast-furnace slags. Science and Transport Progress, 2014, 5(53): 138–149. doi.org/10.15802/stp2014/29975.

5. Rudenko D.V. Concrete based on modified disperse cement system. Science and Transport Progress, 2016, 4(64): 169–175. doi.org/10.15802/stp2016/78008.

6. Sukhanevich M.V. Features of compositional construction of cement. matrix for waterproofing coatings. “Science Rise”, 2014, no. 5/2(4): 99–107. doi.org/10.15587/2313-8416.2014.33653.

7. Pukharenko R.R., Ibragimov R.A., Izotov V.S. The role of complex additives in the production of durable cement composites. Scientific electronic archive http://econf.rae.ru/article/6987-2015.

8. Shumakov I.V., Mikautadze, R.I., Lyakhov, I.I. Optimization Trends in Forecasting the Duration of Construction. Scientific Bulletin of Civil Engineering, 2018, 91(1): 115–121. doi.org/ 10.29295/2311-7257-2018-91-1-115-121.

9. Elenova A.A. Development of a complex additive for accelerated hardening of cement stone. Dis. Cand. of Tech. Sciences M. 2017: 164.

10. Zakharov S.A. Optimization of concrete compositions by highly effective polycarboxylate plasticizers. Building materials. 2008, no. 3: 42–43.

11. Kanchanason V., Plank J. C-S-H − PCE Nanocomposites for Enhancement of Early Strength of Cement. Proceedings of the 19th International Conference on Building Materials (IBAUSIL 2015). Weimar. Germany, 2015. B. 1: 0759–0766.

12. Kim J. J., Foley E. M., Taha M. M. R. Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C-S-H) with varying CaO/SiO2 mixture ratios. Cement and Concrete Composites. 2013, 36: 65–70. https://doi.org/10.1016/j.cemconcomp.2012.10.001.

13. Garrault S. Study of C-S-H growth on C3S surface during its early hydration. Materials and Structures. 2005, no. 38: 435–442. https://doi.org/10.1617/14343.

14. Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model / M. Königsbergera, M. Hlobila, B.Delsauteb et al. Cement and Concrete Research. 2018, no. 103: 77–94. https://doi.org/10.1016/j.cemconres.2017.10.002.

15. Іlerisoy Z. Y., Takva Y. Nanotechnological Developments in Structural Design: Load-Bearing Materials / Engineering, Technology and Applied. 2017, 7, no. 5: 1900–1903. https://doi.org/10.48084/etasr.1414.

16. Middendorf B., Singh N.B. Nanoscience and nanotechnology in cementitious materials. Cement international. 2006, no. 4: 80–86.

17. Schmidt M. Nanotechnological improvement of structural materials – impact on material performance and structural design / Schmidt M. et al. Cement Concrete Composites. 2013, no. 36: 3–7. https://doi.org/10.1016/j.cemconcomp.2012.11.003.

18. Role of Nanotechnology in Concrete a Cement Based Material : A Critical Review On Mechanical Properties and Environmental Impact / R. A. Hitesh, P. Sachin, С. Parikh, J. H. Markna. International Journal of Nanoscience and Nanoengineering. 2015, 2, no. ?: 32–35.

19. Setzer M.J. From nanoscopic surface science to macroscopic performance of concrete – a challenge for scientists and engineers. Proceedings of the 17th International Conference on Building Materials (IBAUSIL 17). Weimar. Germany, 2009, B.1: 1–12.

20. J. Plank, C. Schroefl, M. Gruber. Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete: The importance of PEC compatibility with silica flume. Journal of Advanced Concrete Technology, 2009, 7, no. 1: 5–12. https://doi.org/10.3151/jact.7.5.

21. Sobolev K., Ferrada-Gutiérrez M. How Nanotechnology Can Change the Concrete World, American Ceramic Society Bulletin, 2005, no. 10: 14–17.

22. Middendorf B. Nanoscience and nanotechnology in cement materials. Cement International, 2008, no. 1: 56–54.

23. Pudov I.A. Nanomodification of Portland cement by aqueous dispersions of carbon nanotubes: Abstract. Diss. Cand. Those. Science. – Kazan, KSAS, 2013: 16.

24. Goncharova N.S. Modification of cement stone and contact zone in the structure of concrete with the help of complex additives. Diss. Cand. Those. Science. – Voronezh, VGASU, 2013: 20.

25. Koward T. Influence of surface modified carbon nanotubes on ultra-high performance concrete. Proc. Int. Symp. Ultra High Performance Concrete, Kassel. 2004: 195–202.

26. Sementsov Y.I., Kovalska E.A., Kartel M.T. Deagglomeration of carbon nanotubes in aqueous solutions of melaminoformaldehyde, naphthaleneformaldehyde, lignosulfate plasticizers. Chemistry, physic, surface technology, 2016, 7, no. 2: 203–213. doi.org/ 10.15407/Mtp07.02.202.

27. Sementsov Y.I., Kartel M.T. Influence of small concentrations of carbon nanotubes on structure formation in matrices of different nature. Chemistry, physics and surface technology. 2019, 10, no. 2: 174–189. doi.org/ 10.15407/hftp10.02.174.

28. Kharissova O. V., Martmez L. M., Kharisov B. I. Recent Trends of Reinforcement of Cement with Carbon Nanotubes. Additional information is available, 2016, no. 7. doi.org/10.5772/62292.

29. Vesmawala G.R., Vaghela A. R. Effectiveness of polycarboxylate as a dispersant of carbon nanotubes in concrete. Materials Today: Proceeding. doi.org./10.1016/j.matpr.2020.01.102.

30. Olevych Yu.V. High-strength Portland cement compositions and modified high-strength concretes based on them. Dis. those. Sciences, Lviv, 2019: 186.

31. Yazdani N., Mohanam V. Carbon nanotube in cement mortar: effect of dosage rate and water-cement ratio. International Journal of Material Science (IJMSCI), 2014, 4(2): 57–67. https://doi.org/10.14355/ijmsci.2014.0402.01.

32. Abu Al-Rub, Ashour A.I., Tyson B.M. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementations nanocomposites. Construction and Building Materials, 2012, 35: 647–655. https://doi.org/10.1016/j.conbuildmat.2012.04.086.

33. Ukrainian Standard: TU U 24.1-03291669-009:2009. Carbon Nanotubes. [in Ukrainian].

34. Sementsov Yu.I., Melezhik A.V., Prikhodko G.P. Synthesis, structure, and physic-chemical properties of nanocarbon materials. In: Physical Chemistry of Nanomaterials and Supramolecular Structures. Kyiv, 2007, 2: 116–125 [in Russian].

35. Patent UA 17387. C01B11 / 00 D01F9 | 12. Yanchenko V.V., Kovalenko O.O., Sementsov Yu.I., Melezhik O.V. Method for obtaining catalysts for chemical vapor deposition of carbon nanotubes. 2006. [in Ukrainian].

36. Mathieu Horgnies, Jeffrey J. Chen, Catherine Bouillon. Overview of the use of Fourier Transformed Infrared Spectroscopy to study cementations materials. Conference: 6-th Int. Conf. on Computational Methods and Experiments in Materials Characterization, WIT Transactions on Engineering Sciences, 2013, 77: 98–111. doi.org/10.2495/MC130221. https://doi.org/10.2495/MC130221.

37. Mazurak T.A. Nanomodified Portland cement compositions and fast-setting concretes based on them. Dis. dock. Those. Sciences, Lviv. 2017: 220.

38. Bernal Susan A., Juenger C. G., Xinyuan K, Matthes W., Lothenbach B., Nele De Belie. Characterization of supplementary cementations materials by thermal analysis Materials and Structures. 2017, no. 5: 50–26. doi.org/10.1617/s11527-016-0909-2.

39. Cwirzen A., Habermehl-Cwirzen K., Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research, 2008, 20, no. 2: 65–73. doi.org/10.1680/adcr.2008.20.2.65.

40. Yerushalmi-Rozen R., Szleiferb I. Utilizing polymers for shaping the interfacial behavior of carbon nanotubes .S. Matter, 2006, 2: 24–28. doi.org/10.1039/b513344k.

41. Adresi M., Hassani A., Javadian S. Determining the Surfactant Consistent with Concrete in order to achieve the Maximum Possible Dispersion of Multiwall Carbon Nanotubes in Keeping the Plain Concrete. Journal of Nanotechnology. 2016, 2: 9–15. doi.org/10.1155/2016/2864028.

markovska3.pdf

3. Properties of Polymer Composite Materials Based on Linear/Network Polyurethanes Modified with Organo-Inorganic Modifiers

L.A. Markovska,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: lmarkovskaya@ukr.net

ORCID: 0000-0003-3427-9786

N.Y. Parkhomenko,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0001-7481-9113

O.О. Savelyeva,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0002-3167-8493

L.P. Robota,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: l49robota@gmail.com

ORCID: 0000-0001-5463-4816

Yu.V. Saveliev,

Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: yuri2savelyev@gmail.com

ORCID: 0000-0003-3356-9087

Polym. J., 2022, 44, no. 2: 111-120.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.02.111



Abstract:

Created PKM, which are characterized by high adhesion/cohesion characteristics (29.0-36.5)/(40.0-43.6) MPa, and PKM with a content of MeOM:NiOM-0,32%; CuOM-0,33%; ZnOM-0,34%, which leads to an increase in adhesion/cohesion properties, namely: (35,7–37,0) / (42,8–43,9) MPa and have high performance properties: indicators of water resistance of concrete samples protected by PKM, exceed this indicator of concrete initial up to 3,75 times; initial PKM and modified with MeOM are resistant to sea water and salt fog, as well as to action of special reagents at low temperatures – frost resistance of such concrete after 50 freeze-thaw cycles is 1,0–1,1, ie, concrete coated with PKM becomes frost resistant; concrete cubes with a protective coating have no damage, no changes in the surface of the samples and the surface of the coating, hovewer, not protected concrete cubes collapsed.

According to the IR data, the formation of the amide group -CONH- as a result of the addition of hydrogen of the CH group of the double bond of the MeOM molecule to the nitrogen of the NCO group of TDI was established; the change in the profile of valence and deformation bands oscillations of CH bonds of different groups indicates reactions involving CH bonds and the possibility of complex compounds formation that affect the structure of the polymer, that is to say, the active compounds are fixed in the polymer macrochain, which prevents their diffusion on the material surface and their subsequent removal and prolongs the protective functions of the coating, which has high adhesion/cohesion strength, resistance to UV radiation, biocorrosion, and chemical agents, enhances heat resistance and provides high performance.

Keywords: composite material, organoinorganic modifiers, stability, adhesion/cohesion, performance properties.

REFERENCES

1. Lеbedev Е.V., Sаvеlyеv Yu.V. Pоliмеmery, scho рrоtydiyut аtаtsі mіkrооrgаnizmiv. Visnyк NАN Ukrаiny, 2008, no. 10: 16–22.

2. Pаt. 84253 Uкrаinа. МPК C 08 J 3/00, C 08 J 3/20, С 08 L 75/00, С 08 L 75/06,С 08 L 75/08. Spоsіb оdеrzhаnnya pоliurеtаnоvоi коmpоzitsіi. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl. 10.10.2013, Byul. no. 19.

3. Pаt. 85112 Uкrаinа. МPК C 08 J 3/00, C 08 J 3/20, С 08 L 75/00, С 08 L 75/06,С 08 L 75/08. Spоsіb оdеrzhаnnya pоliurеtаnоvоi коmpоzhytsii. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl..11.11.2013, Byul. no. 21.

4. Pаt. 80830 Uкrаinа. МPК С 08 L 75/00. Pоliurеtаnоva коmpоzhytsiya. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl. 10.06.2013, Byul. no. 11.

5. Pаt. 85111 Uкrаinа. МPК С 08 L 75/04, С 08 L 75/06, С 08 L 75/08. Pоliurеtаnоva коmpоzytsіya. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl.11.11.2013, Byul. no. 21.

6. Pаt 105706 Uкrаin. МPК С 08 L 75/00. С 08 L 75/06, С 08 L 75/08 Spоsіb оdеrzhаnnya pоliurеtаnоvоi коmpоzytsіi. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl. 10.06.2014, Byul. no. 11.

7. Pаt. 90677 Uкrаinа. МPК C 08 J 3/00, C 08 J 3/20, С 08 К 5/500, С 08 L 75/00, С 08 L 75/08. Spоsіb оdеrzhаnnya pоliurеtаnоvоi коmpоzytsіi dlya zakhisnoho pokryttya. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl. 10.06.2014, Byul. no. 11.

8. Pаt. 90678 Uкrаinа. МPК C 08 J 3/00, C 08 J 3/20, С 08 К 5/500, С 08 L 75/00, С 08 L 75/08. Spоsіb оdеrzhаnnya pоliurеtаnоvоi коmpоzytsіi dlya zahysnoho pokryttya. Yu.V. Sаvеlyеv, L.А. Mаrкоvsка, N.I. Pаrhоmеnко, О.О. Sаvеlyеva. Оpubl.10.06.2014, Byul. no. 11.

9. GOST 14760-69. Кlеi. Меtоd орrеdеlеniya рrоchnоsti рri оtryvе. Izd-vо stаndаrtоv, 1969: 7.

10. GOST 14236-81. Plеnкi pоlimеrnyе. Mеtоdy ispytаniya na rаstyazhеniе. Izd-vо stаndаrtоv. 1961: 6.

11. GOST 22900-78. Коjа iskusstvennaya i plenochnie маtеriаli. Меtоdi оhрrеdеlеniya pаrоprоnicаеmоsti i vlаgopоglоchеniya. M.: Izd-vо standartov, 1978: 8.

12. Metody eкspеrimеntаlnоi miкоlоgii. Sрrаvоchniк. К.: Nauk. dumka, 1989: 540.

13. 14 GOST 9.049-91. ЕSZКS. Mаtеriаly pоlimеrnye i ih коmpоnеnty. Меtоdy lаbоrаtоrnyh ispytаnii nа stоiкоst k vоzdеistviyu plеsnеvyh gribov.

14. GOST 9.053- 75. ЕSZКS. Mаtеriаly nеmеtаllichеsкiе i izdеliya I ih primеnеniе. Меtоd ispytаniya nа miкrоbiоlоgichеsкuyu stоiкоst v prirodnih uslоviyah v аtmоsfеrе.

15. GOST 12020– 72. Plаstmаssy. Metody орrеdеlеniya stоiкоsti к dеistviyu chimichеsкikh srеd. – М.: Izd-vо stаndаrtоv, 1972: 13.

16. GOST 12730.5-84 Betoni. Меtоdi 0predeleniya vodonepronicyemosti. M.: Izd-vо standartov, 1984: 6.

17. OST 5.9266- 76. Betoni. Ispytаniye betonf nа morozostoikosty. M.: Izd-vо standartov, 1976: 6.

kuzmenko4.pdf

4. TO THE QUESTION OF ACTIVATING PREPARATION OF BASALTIC FIBRES AS REINFORCING FILLERS OF POLYMERIC COMPOSITES

M.Ya. Kuzmenko,

State Higher Educational Institution „Ukrainian State University of Chemical Technology”, ave. Gagarin, 8, Dnipro, 49005, Ukraine,

ORCID: 0000-0002-7857-283Х

P.I. Bashtanyk,

State Higher Educational Institution „Ukrainian State University of Chemical Technology”, ave. Gagarin, 8, Dnipro, 49005, Ukraine,

ORCID: 0000-0002-7857-283Х

O.M. Kuzmenko,

LLC „Research and development enterprise „UKRPOLIKHIMSYNTEZ”, Komisar Krylov Str., 10, Dnipro, 49124, Ukraine,

O.A.Panfilova,

State Higher Educational Institution „Ukrainian State University of Chemical Technology”, ave. Gagarin, 8, Dnipro, 49005, Ukraine

Polym. J., 2022, 44, no. 2: 121-127.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.02.121

Abstract:

Technical progress requires new and better structural materials with an improved set of physical and mechanical properties, those capable of working in a wide range of power loads, temperatures, environments, as well as new stronger composite materials, including those based on polypropylene.

Considered factors that influence on realization of adhesive contacts in polymeric composition material a “polypropylene – basaltic fibers”.

As a polymeric matrix for researches was used polypropylene of brand 21030 with the index of fluidity of fusion 2,5-4,0 gs/10 min, by tensile strength of 33,6 МPа, Charpy impact strength 34,7 kJ/m2, that is a crystalline thermoplast proof to the dynamic loading and is characterized an increase inflexibility.

In-process used basaltic fibers (BF) that cut on segments a 8-12 mm from the plait of brand (TU U 00292729001-96). Previous preparation of basaltic fibers was executed according to [4] by the method of brief treatment by 0,5 n solution of NaOН. It allows to clean from the surface of fibers of contamination, activate them superficial layers, partly to take off internal tensions. Preparation of surface of fibers was realized the same for her dressing.

It is set that the previous activating of surface of basaltic fibers positively influences water 0,5n solution of hydroxide of natrium on the increase of physical and mechanical descriptions of composite on the basis of polypropylene. Use of the preliminary dressed inorfil in composition polymeric composition material, assists the substantial increase of mechanical properties and reliability of exploitation of wares from such material in time and in the conditions of action of higher extreme external factors.

The high size of adhesion strength is observed only at the good moistening by fusion of thermoplast of surface of fibers and at his greater area. Therefore was interesting simultaneously to conduct measuring of regional corner of moistening of basaltic fibers fusion of polypropylene depending on the temperature of experiment (Т) and time of self-control (τ) of fibers in fusion. Analysing these, see that regional corner of moistening of basaltic fibers with the increase of temperature (Т) and time of self-control (τ) constantly diminishes fusion of polypropylene, that testifies to the favourable terms of change of these factors at forming of adhesion contact.

It is shown that quality of process of activating of surface of basaltic fibers well correlates with the change of indexes “adhesion strength” and “regional corner of moistening” from a temperature and duration of process of moistening. By means of the executed experiments optimal technological parameters were certain for the achievement of maximal size of adhesion strength in the primary system “a polypropylene is the undressed basaltic fibers ” : temperature of fusion of 2100С and duration of adhesion contact 15 min. Most rationally to activate a basaltic fibers during three o’clock of 0,5 н. by water solution of NaОН, as after this process the greatest value of adhesion strength (24,9±0,7 МPа) and durability of a treat filament at the level of 97,00 кН, that is higher, than initial durability of basaltic fibers (82,17 кN), is arrived at.

Keywords: basaltic fibers, properties, previous treatment, polypropylene, polymeric composition material.

REFERENCES

1. Kostyuk L.I., Shandruk M.I., Kolodyuk N.P. Vliyanie kremnijsoderzhashchih appretov na svojstva napolnennyh polietilenovyh kompozicij. Ukr. hіm. zhurn. 2001, 67, no. 7–8: 125–128.

2. Chervakov D.O., Bashtanik P.І., Burmіstr M.V., Czigany I., Deak T. Doslіdzhennya vplivu poverhnevoї modifіkacії bazal’tovih volokon. Voprosy himii i himicheskoj tekhnologii. 2006. no. 5: 166–169.

3. Domasius Nwabunma, Thein Kyu Polyolefin Composites. New York: Wiley, 2008: 603. https://doi.org/10.1002/9780470199039.

4. Bashtanik P.I., Ovcharenko V.G. Bazal’toplastiki antifrikcionnogo naznacheniya na osnove polipropilena. Mekhanika kompozitnyh materialov. 1997. 33, no. 3: 417–421.

5. Gorbatkina Yu.A. Adgezionnaya prochnost’ v sisteme «polimer – volokno». M.: Himiya, 1987: 192.

6. Chujko A.A., Gorlov Yu.I. Himiya poverhnosti kremnezema. Stroenie poverhnosti, aktivnye centry, mekhanizmy sorbcii. K.: Nauk. Dumka, 1992: 131.

7. Plyusina I.I. Infrakrasnye spektry silikatov. M.: Moskovskij gosudarstvennyj universitet, 1967: 184.

sisyuk5.pdf

5. MODIFICATION OF ALKYD RESINS WITH FUNCTIONALIZED DIENE LIQUID RUBBERS TO CREATE POLYMER COATINGS WITH IMPROVED PROPERTIES

N.V. Hudzenko,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: n.hudzenko@gmail.com

ORCID: 0000-0003-2363-4527

V.G. Sysyuk,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: sisyk.valentina@gmail.com

ORCID: 0000-0003-4371-337X

L.I. Zel,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0002-0663-8262

N.G. Ugro,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0003- 4729-4512

V.K .Grishchenko,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0002-4951-936X

S.M. Ostapyuk,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0001-8436-9080

Polym. J., 2022, 44, no. 2: 128-136.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.02.128


Abstract:

Modification of existing paints and varnishes based on alkyd and melamine alkyd resins as well as creation of new film formers with the help of functionalized oligomers in order to improve the properties of materials during their operation was carried out. Liquid oligobutadiene rubber with end hydroxyl groups, HTPB trend mark was used . Pentaphthalic varnish PF-060 and melamine-formaldehyde resin K-421-02 was modified by triisocyanate oligobutadiene rubber based on trimethylolpropane and isophorone diisocyanate resin in different ratios.

Analysis of the FTIR spectra of the developed paints and varnishes showed that the process of polymerization in a thin film in air forms a spatially crosslinked polymer and passes through the stage of formation of branched soluble polymers, followed by copolymerization of components with oxygen and formation of structured solid polymer.

The optimal content of rubber in the modified paints and varnishes was estimated. For alkyd varnish PF-060 it equals 10 wt.% and for melamine-formaldehyde resin K-421-02 is in the range 7-10 wt.%. Addition of triisocyanate accelerates the drying process of coatings on air, high values of surface hardness, adhesion, resistance to bending and water absorption were also received.

Developed modified paints and varnishes are characterized by increased viability, shelf life of more than 6 months, homogeneity. Proposed scheme allows to obtain transparent coatings with high physical and mechanical characteristics and can be recommended for practical use in various coating technologies.

Keywords: paint and varnish material, film former, modification, alkyd resin, functionalized diene liquid rubbers.

REFERENCES

1. Pirita RämänenSirkka Liisa Maunu. Structure of tall oil fatty acid-based alkyd resins and alkyd–acrylic copolymers studied by NMR spectroscopy. Progress in Organic Coatings. 2014. 77, no. 2: 361–368.https://doi.org/10.1016/j.porgcoat.2013.10.013

2. Ikhazuagbe H. Ifijen, Hamilton D. Odi, Muniratu Maliki, Stanley O. Omorogbe, Aireguamen I. Aigbodion, Esther U. Ikhuoria. Correlative studies on the properties of rubber seed and soybean oil-based alkyd resins and their blends. J. Coat. Technol. Res. November. 2020. https://doi.org/10.1007/s11998-020-00416-2

3. Holdberh M.M. Materyaly dlia lakokrasochnыkh pokrytyi. M.: Khymyia, 1972: 344.

4. Sorokyn M.F. Khymyia y tekhnolohyia plenkoobrazuiushchykh veshchestv. M.: Khymyia, 1989: 316.

5. Sysiuk V.H., Bubnova A.S. Doslidzhennia napriamkiv modyfikatsiinoho peretvorennia alkidnykh plivkotvornykh. Polimernyi zhurnal. 2006. 28, no. 3: 233–237.

6. Figovsky O., Shapovalov L., Leykin A. at all. Advances in the field of nonisocyanate polyurethanes based on cyclic carbonates. Chemistry&Chemical Technology. 2013. 7, no. 1: 79–87. https://doi.org/10.23939/chcht07.01.079.

7. Wang Q., Pellegrene B., Soucek M.D. Investigation of Methyl Methacrylate Grafting on Model Single Fatty Acid Alkyds. Ind. Eng. Chem. Res. 2018. 57, no. 36: 12018–12028. https://doi.org/10.1021/acs.iecr.8b01941.

8. Рatil D.M., Phalak G.A., Mhaske S.T. Design and Synthesis of Bio-Based Epoxidized Alkyd Resin for Anti-Corrosive Coating Application. Iranian Polymer Journal. 2018. 27, no. 10: 709–719. https://doi.org/10.1007/s13726-018-0646-1

9. Shen Z., Li Zheng L., Liu Xiao C.G.Y., Wu S.J., Liu B., Zhang A. A comparison of Non-Isocyanate and HDI-Based Poly(Ether Urethane): Structure and Properties. Polymer. 2019. 175: 186–194. https://doi.org/10.1016/j.polymer.2019.05.010

10. Hudzenko N.V., Sisyuk V.G., Grishchenko V.K., Ugro N.G., Zel L.I. Investigation of the properties of polymer coatings based on melamine alkyd resin and oligomeric urethane maleates. Polym. J. 2020. 42, no. 3: 183–190. https://doi.org/10.15407/polymerj.42.03.183.

11. Murillo E.A. Waterborne Star‐shaped Styrene‐alkyd Resins. Journal of Applied

Polymer Science. 2019: 48386. https://doi.org/10.1002/app.48386.

12. Easton T., Poultney S. Waterborne Silicone-Organic Hybrid Coatings for Exterior

Applications. Journal of Coatings Technology and Research. 2007. 4, no. 2: 187–190.

https://doi.org/10.1007/s11998-007-9018-z.

13. Chardon F., Denis M., Negrell C., Caillol S. Hybrid alkyds, the glowing route to reach cutting-edge properties? Progress in Organic Coatings. 2021. 151: 106025. https://doi.org/10.1016/j.porgcoat.2020.106025

14. Strohanov Y.V., Strohanov V.F. Osobennosty strukturoobrazovanyia y svoistva neyzotsyanatnykh epoksyuretanovykh polymerov. Kley. Hermetyky. Tekhnolohyy. 2005, no. 7: 12–17.

15. Shapovalov L.D., Fyhovskyi O.L., Kudriavtsev B.B. Neyzotsyanatnye polyuretany. Syntez y prymenenye. Vopr. khym. y khym. tekhnol. 2004, no. 1: 231–236.

16. Mohylevych M.M., Turov B.S., Morozov Yu.L., Ustavshchykov B.F. Zhydkye uhlevodorodnye kauchuky. M.: Khymyia, 1983: 200.

17. Petrov H.Y., Kalaus A.E., Belov Y.B. Syntetycheskyi kauchuk. L.: Khymyia, 1976: 480.

18. Mohylevych M.M., Plyss E.M. Okyslenye y okyslytelnaia polymeryzatsyia nepredelnykh soedynenyi. M.: Khymyia, 1990: 238.

19. Korshak V.V. Tekhnolohyia plastycheskykh mass. M: Khymyia, 1985: 492.

20. Lyvshyts R.M., Semyna R.A., Poliakova M.N. Plenkoobrazovanye nenasyshchennukh olihomerov. LKM y ykh prymenenye. 1987, no. 1: 14–16.

shtompel6.pdf

6. STRUCTURE, MORPHOLOGY AND ANTIMICROBIEL PROPERTIES NANOCOMPOSITES BASED ON POLYELECTROLYTE COMPLEXE AND METALIC NANOPARTICLES ARGENTUM AND CUPRUM

Volodymyr Shtompel,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0003-3437-0280

Valery Demchenko,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0001-9146-8984

Sergiy Ryabov,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

ORCID: 0000-0003-2996-3794

Polym. J., 2022, 44, no. 2: 137-144.

Section: Structure and properties.

Language: Ukrainian.

https://doi.org/10.15407/polymerj.44.02.137

Abstract:

Using metods of x-ray diffraction (XRD), transmission electron microscopy (TEM) and antimocrobial properties with test-bacteriums E. coli and S. aureus vere investigated nanocomposites type polymer-metal based on stoichiometric polyelectrolyte complexe (PEC) and metalic nanoparticles argentum and cuprum. Samples PEC with amorphous structure vere formated based on polyelectrolytes natural parentage: Na-carboxymethyl cellulose and β-cyclodextrin that functionalyzed amino grups. Using sorbtion by samples PEC of ions salts AgNO3 and CuSO4 , that losung in water (concentration 0,1 mole/l) vere formated samples of triples polyelectrolyte-metalic coplexes (TPMC). By using method XRD showed existence in volyme TPMC of areas (with amorphous strucrure) of fragmented macromoleculare coils of PEC (macroligande) that co-ordinated as cations Сu2+, so cations Ag+. In result of chemical reduced (using salt NaBH4) this cations transition metalі in volum TPMC, vere formed polymer– metalic nanocomposites with metal nanoparticles argentum and cuprum, what shown using metod XRD. By using metod TEM vere installed, what in nanocomposites metalic nanoparticles cuprum whose middle size 12,4 nm, whereas nanoparticles argentum – 4,3 nm. Antimicrobial tests polymer-metal nanocomposites shown, that antimicrobial properties possess nanoparticles argentum and cuprum.

Keywords: polyelectrolyte complex, carboxymethyl cellulose, functionalised β-cyclodextrin, cations metal, nanocomposites, metal nanoparticles, antimicrobial properties.

REFERENCES

1. Bekturov E.A., Bimendina L.A. Interpolimernyie kompleksyi. Alma-Ata: Nauka, 1977: 264.

2. Dragan S., Cristea M. Polyelectrolyte complexes. IV. Interpolyelectrolyte complexes between some polycations with N,N-dimethyl-2-hydroxypropyleneammonium chloride units and poly(sodium styrenesulfonate) in dilute aqueous solution. Polymer, 2002, 43: 55–62. https://doi.org/10.1016/S0032-3861(01)00598-5.

3. Kabanov V.A. Polielektrolitnyie kompleksyi v rastvore i v kondensirovannoy faze. Uspehi himii, 2005, 74: 5–23.

4. Lee J. Popov Yu.O., Fredrickson G.H. Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation. J. Chem. Phys, 2008, 128: 4908–4921. https://doi.org/10.1063/1.2936834.

5. Kabanov A.V., Kabanov V.A. Interpolielektrolitnyie kompleksyi nukleinovyih kislot kak sredstvo dostavki geneticheskogo materiala v kletku. Vyisokomolekulyar. soed. Ser. A-B, 1994, 36: 198–211.

6. Kabanov V.A., Zezin A.B., Kasankin V.A., Yaroslavov A.A., Topchiev D.A. Polielektrolityi v reshenii ekologicheskih zadach. Uspehi himii, 1991, 60: 595–601. https://doi.org/10.1070/RC1991v060n03ABEH001063.

7. Zhao Q., Qian J.W., An Q.F. et al. A faciel route for fabricating novel polyelectrolyte complex membrane with high pervaporation performance in isopropanol dehydration. J. Membr. Sci, 2008, 320: 8–12. https://doi.org/10.1016/j.memsci.2008.04.040.

8. Dinu I.A. Mihai M., Dragan E.S. Comparative study on the fomation and flocculation properties of polyelectrolyte complex dispersions based on synthetic and natural polycations. Chem. Eng. J, 2010, 160: 115–121. https://doi.org/10.1016/j.cej.2010.03.018.

9. Zezin A.B., Rogacheva V.B., Valueva S.P., Nikonorova N.I., Zezin A.A. From triple interpolyelectrolyte-metal complexes to nanocomposite polymer-metall // Russian thechnology, 2006, 1: 191–200.

10. Demchenko V.L., Shtompel’ V.I. Structuring, morphology and thermomechanical properties of nanocomposites formed from ternary polyelectrolyte-metal complexes based on pectin, polyethyleneimine, and CuSO4. Polymer Sci. Part B, 2014, 56: 927–934. https://doi.org/10.1134/S1560090414060049.

11. Zezin A.B. Rogacheva V.B., Felgman V.I., Afanasiev P., Zezin A.A. From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Adv. Coll. Interface Sci, 2010, 158: 84–93. https://doi.org/10.1016/j.cis.2009.09.002.

12. Shtompel V.I. Osoblyvosti mikrofazovoi struktury i vlastyvosti modyfikovanykh uretanovmisnykh polimeriv. Avtoref. dys. dokt. khim. nauk (02.00.06). Kyiv (IKhVS NAN Ukrainy), 2003: 36.

13. Shtompel V.I., Kercha Yu.Yu. Struktura lineynyih poliuretanov. Kiev: Nauk. dumka, 2008: 248.

14. Zezin A.A., Felgman V.I., Abramchuk S.S., Ivanchenko V.K.,. Zezina E.A, Shmakova N.A., Shvedunov V.I. Formation of metal-polymer hybrid nanostructure during radiation–induced reduction of metal ions in poly(acrylic acid)-poly(ethyleneimine) complexes. Polymer Sci. Ser.C, 2011, 6: 53–61. https://doi.org/10.1134/S1811238211060038.

15. Demchenko V., Riabov S., Rybalchenko N., Goncharenko L., Kobylinskyi S., Shtompel’ V. X-ray study of structural formation, thermomechanical and antimicrobial properties of copper-containing polymer nanocomposites obtained by the thermal reduction method. Eur. Polym. J. 2017, 96: 326–336. https://doi.org/10.1016/j.eurpolymj.2017.08.057.

16. Mirkin L.I. Rentgenostrukturnyiy analiz. Spravochnoe rukovodstvo. Poluchenie i izmerenie rentgenogramm. M.: Nauka, 1976: 327.


visloguzova7.pdf

7. INVESTIGATION OF THE ABILITY TO BIODEGRADABILITY OF POLYURETHANE FOAM COMPOSITE MATERIALS WITH ALBUCID AND THE DYNAMICS OF ALBUCID RELEASE IN VITRO

T.V. VISLOHUZOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: rudenchyk@gmail.com

ORCID: 0000-0002-4071-4329

R.A. ROZHNOVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: rozhnovarita@gmail.com

ORCID: 0000-0003-3284-3435

N.A. GALATENKO,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: politoks@merlin.net.ua

ORCID: 0000-0002-5961-5750

L.YU. NECHAEVA,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,

e-mail: politoks@merlin.net.ua

ORCID: 0000-0002-9715-5986

Polym. J., 2022, 44, no. 2: 145-154.

Section: Medical polymers.

Language: English.

https://doi.org/10.15407/polymerj.44.02.145

Abstract:

Studies of biodegradability of polyurethane foam (PUF) composite materials with albucid under the influence of biological medium 199 (BM 199) and saline solution for 2 weeks, 1, 3 and 6 months were conducted. IR spectroscopy, physical-mechanical tests, DSC and TGA before and after incubation in model mediums were investigated. It was found that the influence of BM 199 and saline solution on the structure and properties of composite materials with albucid is similar. According to the results of physical-mechanical studies under the influence of model mediums there are processes of biodegradation which are confirmed by a decrease in adhesive strength after incubation in BM 199 and saline solution. According to IR spectroscopy, biodegradation is accompanied by redistribution of hydrogen bonds of NH groups of the polymer matrix. The results of studies by the DSC method indicate a decrease of Tg and increase of ΔСР of PUF composites with albucid compared to the control, which is associated with increasing of segmental mobility of macromolecules under the influence of model mediums and due to the albucid release from polymer matrix. It was found that PUF and PUF composites with albucid in vitro remain heat-resistant materials, because after incubation in BM 199 and a saline solution there is an increase in T0 and Tmax by the TGA method. Studies of the dynamics of albucid release from the PUF matrix were carried out. It was found that the composite materials are capable to the prolonged release of the drug. The amount of released albucid is 36.0 % on the 60th day of the experiment, which does not exceed the therapeutic dose and has no toxic effects. Therefore, polyurethane foam composite materials with albucid can be proposed as promising materials for use as implants with prolonged action of albucid in ophthalmological surgery.

Keywords: polyurethane foam, composite material, albucid, biological medium 199, saline solution.

REFERENCES

1. McBane J.E., Santerre J.P., Labow R.S. The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation. Journal of Biomedical Materials Research Part A, 2007, 82A, no. 4: 984–994. https://doi.org/10.1002/jbm.a.31263

2. Salmasi S., Nayyer L., Seifalian A.M., Blunn G.W. Nanohydroxyapatite effect on the degradation, osteoconduction and mechanical properties of polymeric bone tissue engineered scaffolds. The Open Orthopaedics Journal, 2016, 10, no. 3: 900–919. https://doi.org/10.2174/1874325001610010900.

3. Hafeman A.E., Zienkiewicz K.J., Zachman A.L., Sung H.-J., Nanney L.B., Davidson J.M., Guelcher S.A. Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds. Biomaterials, 2011, 32, no. 2: 419-429. https://doi.org/10.1016/j.biomaterials.2010.08.108.

4. Visan A.I., Popescu-Pelin G., Socol G. Degradation behavior of polymers used as coating materials for drug delivery — A Basic Review. Polymers (Basel), 2021, 13, no. 8: 1272. https://doi.org/10.3390/polym13081272.

5. Makadia H.K., Siegel S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011, 3, no. 3: 1377–1397. https://doi.org/10.3390/polym3031377.

6. Malanchuk, V.O., Astapenko, O.O., Halatenko, N.A., Rozhnova, R.A. The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area. Likars’ka sprava, 2013, no. 6: 83–88.

7. Reza M.S., Quadir M.A., Haider S.S. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. Journal of Pharmacy and Pharmaceutical Sciences, 2003, 6, no. 2: 282–291.

8. Varma M.V.S., Kaushal A.M., Garg A., Garg S. Factors Affecting Mechanism and Kinetics of Drug Release from Matrix-Based Oral Controlled Drug Delivery Systems. American Journal of Drug Delivery, 2004, 2, no. 1: 43–57. https://doi.org/10.2165/00137696-200402010-00003.

9. Tiwari S.B., Rajabi-Siahboomi A.R. Extended-Release Oral Drug Delivery Technologies: Monolithic Matrix Systems. In book: Methods in Molecular Biology / Ed.: K.K. Jain. Totowa: Humana Press, 2008, 437: 217–243. https://doi.org/10.1007/978-1-59745-210-6_11.

10. Sivak W.N., Pollack I.F., Petoud S., Zamboni W.C., Zhang J., Beckman E.J. Catalyst-dependent drug loading of LDI–glycerol polyurethane foams leads to differing controlled release profiles. Acta Biomaterialia, 2008, 4, no 5: 1263–1274. https://doi.org/10.1016/j.actbio.2008.01.008.

11. Sivak W.N., Zhang J., Petoud S., Beckman E.J. Simultaneous drug release at different rates from biodegradable polyurethane foams. Acta Biomaterialia, 2009, 5, no. 7: 2398–2408. https://doi.org/10.1016/j.actbio.2009.03.036.

12. Chen W., Carlo C., Devery D., McGrath D. J., McHugh P.E., Kleinsteinberg K., Jockenhoevel S., Hennink W.E., Kok R.J. Fabrication and characterization of gefitinib-releasing polyurethane foam as a coating for drug-eluting stent in the treatment of bronchotracheal cancer. International Journal of Pharmaceutics, 2018, 548, no. 2: 803–811. https://doi.org/10.1016/j.ijpharm.2017.10.026.

13. Vislohuzova T., Rozhnova R., Galatenko N. Development and Research of Polyurethane Foam Composite Materials with Albucid. American Journal of Polymer Science and Technology, 2021, 7, no. 3: 38–43. http://doi.org/10.11648/j.ajpst.20210703.11.

14. Galatenko N.A., Kuliesh D.V., Narazhaiko L.F., Grytsenko V.P., Zakashun T.Iu., Maletskyy A.P., Bigun N.M. Assessing in vitro cytotoxicity and pH of extracts of synthetic polymers made of cross-linked polyurethane composite with immobilized albucid. Journal of Ophthalmology (Ukraine), 2020, no. 4 (495): 56–61. http://doi.org/10.31288/oftalmolzh202045661.

15. Galatenko N.A., Rozhnova R.A., Kuliesh D.V., Vislohuzova T.V., Maletskyy A.P., Bigun N.M. Response of soft tissues and abdominal organs of rabbits and rats to implanting albucid-containing cross-linked polyurethane composite. Journal of Ophthalmology (Ukraine), 2020, no. 6 (497): 30–37. http://doi.org/10.31288/oftalmolzh202063037.

16. ASTM D897-08(2016) Standard Test Method for Tensile Properties of Adhesive Bonds.

17. Mashkovskiy M.D. Lekarstvennyye sredstva. 16 edition, Moscow: Novaja volna, 2012: 1216. ISBN 978-5-7864-0218-7.